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Abstract
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shows that the selection argument of Carlsson and van Damme [2] holds uniformly over
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1 Introduction

The global games framework, first proposed in Carlsson and van Damme [2], has been widely

applied as a selection device in 2×2 coordination games1. Their first result is that if players

have an information structure resulting from independent additive observational noise, then,

the set of rationalizable strategies shrinks to a unique equilibrium as the amplitude of the

noise goes to 0. Their second result is that the selected equilibrium is in fact to play the

risk-dominant strategy studied in Harsanyi and Selten [4].

While it is true that global games have been widely used in applied work, there have been

only few attempts to use the information structure of Carlsson and van Damme [2] in models

of greater complexity than one shot two actions coordination games. A notable exception is

Frankel, Morris and Pauzner [3] which proves selection results for a class of supermodular

games in which the actions and the state of the world belong to the real line. Adding layers

of decision making on top of a 2 × 2 coordination problem is another tempting direction

in which to extend the results of Carlsson and van Damme [2]. The main hurdle towards

that goal is that in such models, the payoffs of the coordination game will be endogenously

determined: to use selection results in this setting, we need them to hold uniformly over the

class of possible payoffs. Up to now however, available selection results all take the payoff

structure as given; in other words, they hold pointwise while we need uniform selection. A

simple example makes this point clearer (see Appendix A for more detailed examples).

Consider the problem of a principal trying to get her two agents to cooperate. The game

has three periods: at time t = 1, the principal can invest in some capital k at a positive

increasing cost c(k). At time t = 2, the two agents observe k perfectly and then play a global

game Γ(θ, k, σ) with actions {cooperate, defect}, where θ is the noisily observed state of the

world, σ the amplitude of the noise and capital k parameterizes players’ payoffs. At time

t = 3, the principal gets a payoff depending on whether the agents cooperated or not. What

is the optimal capital stock k∗σ the principal should purchase? How do k∗σ and the principal’s

payoff vary as σ goes to zero?

To solve her optimization problem, the principal must form some belief about her agents’

behavior. When the state of the world is common knowledge, because of multiplicity of

1See Morris and Shin [7] for a literature review.
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equilibria, this problem is not well defined. This motivates the use of a global game informa-

tion structure. The typical global games selection results state that for a given capital stock

k, the agents will cooperate if and only if the state of the world is above some threshold

θσ(k) and that as σ goes to zero, θσ(k) converges to the risk-dominant threshold θRD(k).

Uniqueness of equilibrium makes the principal’s problem well defined. Assume there is an

optimal amount of capital k∗0 the principal would choose if there was no noise and the agents

used the risk-dominant threshold θRD(k). Is it true that k∗σ converges to k∗0 as σ goes to

zero? Is it true that the principal’s payoff is continuous in σ?

Under general circumstances, the answer to these questions is affirmative, however as the

counter-example of Figure 1 shows, pointwise convergence of θσ(k) is not sufficient for these

results to hold. In this counter-example the cooperation threshold θσ(k) converges pointwise

to a constant threshold equal to 1
2
, but does not converge uniformly. In fact, there is always

a capital stock such that the players’ cooperation threshold is 1
4
. If agents behaved according

to Figure 1, the principal might choose a capital stock k∗σ = 1− σ
2

for all σ > 0, but at the

limit she would choose k∗0 = 0 since capital is costly. To show that in fact k∗σ does converges

to k∗0, we need to prove uniform convergence of θσ(k) over the set of possible capital stocks

as σ goes to 0.

The goal of this paper is to provide uniform selection results over general families of

payoffs. Section 2 defines the classes of payoffs over which we will prove uniform selection.

Section 3, which constitutes the core of the paper, proves the main selection results. Section

4 concludes. Appendix A provides explicit examples for which uniform selection either fails,

or isn’t obvious. Appendix B extends the analysis to symmetric games with a continuum of

players. Proofs are contained in Appendix C unless mentioned otherwise.

2 Choosing an appropriate payoff class

This section introduces the class of games that we will be studying. Keeping with the

framework of Carlsson and van Damme [2], the paper focuses on two actions two players

games. Results presented in coming sections extend to symmetric games with two actions

and a continuum of players, such as those reviewed by Morris and Shin [7]. The extension

is presented in Appendix B.
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Figure 1: A sequence of thresholds converging pointwise but not uniformly. Agents cooperate
above the threshold and defect below.

We consider 2 × 2 games, with players i ∈ {1, 2}, actions a ∈ {C,D} and payoffs that

depend continuously on a state of nature θ ∈ I, where I is an interval of R. Payoffs are

denoted by

C D

C wi
11(θ) wi

12(θ)

D wi
21(θ) wi

22(θ)

where i is the row player. Both players get signals xi = θ + σεi, where ε1 and ε2 are

independent random variables with support [−1, 1], and θ is a random variable with a C1

distribution fθ and convex support.

Let G(θ) denote the game with full information at state θ and let Γσ be the global

game with noisy information. Denote by w the payoff structure (wi
11, w

i
12, w

i
21, w

i
22)i∈{1,2}.

Pure strategies are functions s : R 7→ {C, D}. For completeness, mixed strategies will be

considered by allowing players to privately observe independent random variables ũ uniformly

distributed on [0, 1]: mixed strategies can be viewed as functions s : R × [0, 1] 7→ {C,D}.
To eliminate multiple representations, the constraint is imposed that for all x ∈ R, and

(u, u′) ∈ [0, 1]2, whenever u < u′, then {s(x, u) = C ⇒ s(x, u′) = C}. Pure strategies are

also mixed strategies, which do not depend on the random variable ũ.
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In order to apply global games techniques to endogenous payoff structures we need to

prove selection results holding uniformly over some family Λ of possible payoff functions.

Rather than dealing with the problem on a case by case basis, the goal of this paper is to

prove uniform selection results holding for general classes of payoffs. However, choosing an

appropriate reference class of payoff functions Λ is delicate. While well behaved classes allow

for simple proofs and fewer cases, they also limit the applicability of the results. This section

defines and motivates the fairly general reference class of payoff functions we will use. We

must first introduce a few assumptions and definitions.

Assumption 1 For any state of the world θ, the game G(θ) has pure strategy equilibria.

The set of equilibria is either {(C, C)},{(D,D)} or {(C, C), (D,D)}.

This assumption rules out games of “matching pennies” and ensures that there exists a fixed

order on actions such that for all states of the world, the game G(θ) is either dominance

solvable or supermodular with respect to the aforementioned order.

Assumption 2 (increasing differences in the state of the world) The game has in-

creasing differences in θ:

∀i ∈ {1, 2}, both ai(θ) ≡ wi
12(θ)− wi

22(θ) and bi(θ) ≡ wi
11(θ)− wi

21(θ) are strictly increasing

in θ.

Assumption 3 (Dominance regions) Let w be a payoff structure satisfying Assumptions

1 and 2. There exist thresholds θi and θi solutions to

wi
12(θi)− wi

22(θi) = 0 and wi
11(θi)− wi

21(θi) = 0.

Together, Assumptions 1, 2, and 3 insure that whenever G(θ) has multiple equilibria, either

(−∞, θ] is included in the risk-dominance region of (D,D) or [θ,∞) is included in the

risk-dominance region of (C, C). This is the unidimensional equivalent of Carlsson and

van Damme’s assumption that states should be connected to dominance regions by a path

included in the risk-dominant region of one equilibrium.

Definition 1 (differences in actions) Given a payoff structure w, we define hi
w(θ) =

bi
w(θ)− ai

w(θ) = wi
11 − wi

12 − wi
21 + wi

22.
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Whenever hi
w(θ) > 0, then the game has strictly increasing differences in actions for player i

at θ, that is, wi
11 − wi

21 > wi
12 − wi

22. Supermodularity requires that for all θ ∈ I, hi
w(θ) ≥ 0

should hold. While Assumption 1 does imply increasing differences in actions over some

intermediate range of states, assuming full supermodularity is in fact quite restrictive. Con-

sider for instance the symmetric game :

C D

C θ γθ

D M M/2

where payoffs are given for the row player, γ < 1/2, and θ ∈ R. This game satisfies

Assumption 1 but not supermodularity.

Definition 2 (modulus of continuity) A function ρ : R+ → R+ is a modulus of conti-

nuity if and only if it is continuous, strictly increasing and ρ(0) = 0. A funtion g : R → R

has a modulus of continuity ρ if and only if

∀(x, y) ∈ R2, |g(x)− g(y)| ≤ ρ(|x− y|).

We will require payoff functions to share a common modulus of continuity. We know from

the Arzelà-Ascoli theorem2 that this is in fact a compactness assumption. It is less restrictive

than assuming that payoff functions are Lipschitz continuous with a common rate R. Because

utility functions commonly used in economics typically satisfy the Inada conditions, they are

not Lipschitz continuous; however they do admit a modulus of continuity.

Definition 3 (rates) Let g be some function from I to R. We define the upper and lower

rates of g at θ by,

∂+g

∂θ
(θ) = lim sup

θ′→θ

g(θ′)− g(θ)

θ′ − θ
and

∂−g

∂θ
(θ) = lim inf

θ′→θ

g(θ′)− g(θ)

θ′ − θ
.

Those rates are always well defined although they might take infinite values. The lower and

upper rates of g coincide at θ if and only if g is differentiable at θ.

2For a reference, see James Munkres, Topology, Prentice Hall, 2000.
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Definition 4 (Reference payoff class) Consider κ > 0, ν > 0, d > 0, a modulus of

continuity ρ, and a compact set K ⊂ R. We denote by Λκ,ν,d,ρ,K the class of payoff structures

w such that,

1. w satisfies Assumptions 1, 2 and 3

2. ∀i ∈ {1, 2}, ai
w and bi

w have lower rates greater than κ > 0 over [θi(w)− ν, θi(w) + ν]

3. ∀i ∈ {1, 2}, [θi(w), θi(w)] ⊂ K

4. payoff functions corresponding to w have a modulus of continuity ρ

5. ∀i ∈ {1, 2}, θi(w)− θi(w) > d.

As noted previously, the payoff structures we are considering are not necessarily supermod-

ular. However, as the following lemma shows, if w ∈ Λκ,ν,d,ρ,K it does satisfy increasing

differences in actions over the range of states of the world for which there are potentially

multiple equilibrium action.

Lemma 1 (increasing differences in actions) Consider a class Λκ,ν,d,ρ,K of payoff struc-

tures and define ~ ≡ dκ/2 and r = ρ−1(dκ/8). Then, for all w ∈ Λκ,ν,d,ρ,K,

∀i ∈ {1, 2}, ∀θ ∈ [θi(w)− r, θi(w) + r], hi
w(θ) ≥ ~ > 0.

3 Uniform selection

In this section we prove the two main results of the paper:

Joint selection: There exists σ > 0 such that for all σ ∈ (0, σ), and all payoff structures

w in Λκ,ν,d,ρ,K , the game Γσ(w) has a unique rationalizable pair of strategies.

Uniform convergence: The selected equilibrium converges uniformly over Λκ,ν,d,ρ,K to the

risk-dominant equilibrium associated with each payoff profile.

The logic of the proof is the following: we first prove that for a noise term σ small enough,

Assumption 1 implies that the game Γσ exhibits monotone best response and has extreme
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monotone Nash equilibria; then we prove joint and uniform selection results by showing that

these extreme equilibria are characterized by two real equations whose solutions are well

behaved in the underlying payoff structure.

3.1 Structural results

In this section we consider a payoff class Λκ,ν,d,ρ,K and show that there exists σ > 0, such

that for all σ ∈ (0, σ), and all w ∈ Λκ,ν,d,ρ,K , the set of rationalizable strategies of Γσ(w) is

bounded by extreme monotone Nash equilibria. To do this, we first define a natural order on

strategies denoted by 4. We then show that for σ small enough, the best response mapping

is increasing with respect to 4, and preserves the monotonicity of strategies.

Note that since we do not assume supermodularity, the results of van Zandt and Vives [8]

for Bayesian games do not apply. Also, although there is a consistent order over {C, D} such

that for all θ ∈ I, G(θ) satisfies the single-crossing property of Milgrom and Shannon [6],

this does not imply that the Bayesian game Γσ satisfies the single-crossing property. Finally,

because we do not make a monotone likelihood-ratio assumption on the signalling structure,

the results of Athey [1] cannot be applied, which is why we must limit the amplitude σ of the

noise term. In fact the essence of Proposition 2 is to show that the monotone likelihood-ratio

property holds approximately as σ goes to 0.

Definition 5 (monotone strategies) A strategy s is said to be monotone if it is a pure

strategy, and admits a threshold xs such that,

x < xs ⇒ s(x) = D and x > xs ⇒ s(x) = C.

A monotone strategy of threshold x will be denoted sx and inversely, the threshold of a

monotone strategy s will be denoted xs.

Definition 6 (ordered strategies) Let 4 denote the partial order on pure an mixed strate-

gies defined by

s 4 s′ ⇐⇒ ∀(x, u) ∈ R× [0, 1], s(x, u) = C ⇒ s′(x, u) = C.
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Given a pair of strategies (s, s′) such that s 4 s′, we denote by [s, s′] the set of all strategies

s′′ such that s 4 s′′ 4 s′.

Let BRi denote the best-response correspondence3 of player i. Given her opponent’s strategy

s and her signal xi, player i’s expected payoffs upon cooperation an defection are

ΠC(xi, s) = E
[
wi

12 + {wi
11 − wi

12}1s=C |xi, s
]

(1)

ΠD(xi, s) = E
[
wi

22 + {wi
21 − wi

22}1s=C |xi, s
]
.(2)

Define ∆w
i (xi, s) by ∆w

i (xi, s) ≡ ΠC(xi, s)− ΠD(xi, s).

Lemma 2 (highest and lowest best-response) For any strategy s, BRi(s) admits a high-

est and lowest element with respect to 4, respectively denoted BRi,H(s) and BRi,L(s).

Proof: A best response to s must prescribe C whenever ∆w
i (xi, s) > 0 and D whenever

∆w
i (xi, s) < 0. The best-response will have multiple elements if and only ∆w

i (xi, s) = 0 over

a set with non-zero mass. The existence of the highest and lowest best reply is proven by

construction: BRi,H(s) prescribes C if and only if ∆w
i (xi, s) ≥ 0, while BRi,L(s) prescribes

C if and only if ∆w
i (xi, s) > 0. ¥

We now show that for σ small enough, best-reply correspondences are well behaved with

respect to the order 4 and maintain the monotonicity of strategies.

Proposition 1 (monotone best response) For all w ∈ Λκ,ν,d,ρ,K and σ ∈ [0, r/2], the

game Γσ(w) has monotone best response. That is, for any s and s′,

s′ 4 s ⇒ {
BRi,H(s′) 4 BRi,H(s) and BRi,L(s′) 4 BRi,L(s)

}
.

Proposition 2 (monotone strategies) There exists σ > 0 such that for all w ∈ Λκ,ν,d,ρ,K,

σ ∈ (0, σ), and any monotone strategy sx, then there exists x′ ∈ R such that BRi(sx) = {sx′}.
Moreover, the threshold x′ associated with BRi(sx) is a continuous function of x.

3For readability, the notation omits the dependency of BRi on both w and σ.
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We can now state our first theorem which shows the existence of extreme monotone

strategies and greatly simplifies the rest of the analysis.

Theorem 1 (extreme strategies) There exists σ > 0 such that for all w ∈ Λκ,ν,d,ρ,K

and all σ ∈ (0, σ), the set of rationalizable strategies of game Γσ(w) is bounded by extreme

monotone equilibria.

Proof: Pick σ such that Propositions 1 and 2 hold. Let Ri denote the set of rationalizable

strategies of player i. Ri is the biggest fixed set of BRi ◦BR−i. We know from Proposition 1

that BRi◦BR−i is monotonically increasing with respect to the partial order 4, and we know

from Proposition 2 that it preserves the monotonicity of strategies. Thus we can entirely

replicate the construction given by Milgrom and Roberts [5] and Vives [9] for supermodular

games. ¥
Using this result, the rest of the analysis can now focus on extreme threshold-form strategies.

Note that monotone strategies are pure strategies.

3.2 Selection

In this section we prove joint selection and uniform convergence. Consider a class of payoffs

Λκ,ν,d,ρ,K , we want to characterize the set of rationalizable strategies of global games Γσ(w)

with w ∈ Λκ,ν,d,ρ,K and σ small. The first step is to use Theorem 1, which implies that

there exists σ > 0 such that whenever σ ∈ (0, σ), we only need to study monotone Nash

equilibria to prove that there is a unique rationalizable equilibrium. A monotone equilibrium

is characterized by a pair of thresholds (xi, x−i) such that,

(3) ∆w
i (xi, x−i, σ) = 0, for i ∈ {1, 2}.

This equation derives from the fact that in the presence of observational noise, players’

payoffs must be continuous in their signal. This implies that at a threshold point, players

must be indifferent between their two actions, which provides extra restrictions that must

be satisfied in equilibrium. Hence, to study equilibrium selection, it is equivalent to study

the behavior of the set of indifference equations (3). We have
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(4)

∆w
i (xi, x−i, σ) =

∫ +∞

−∞

[
ai(θ)Fε

(
x−i − θ

σ

)
+ bi(θ)Gε

(
x−i − θ

σ

)]
fε

(
xi−θ

σ

)
fθ(θ)∫ +∞

−∞ fε

(
xi−θ

σ

)
fθ(θ)dθ

dθ.

Let us do the change in variable u = xi−θ
σ

. Noting that fε only puts mass on the [−1, 1]

interval, we obtain

∆w
i (xi, x−i, σ) =

∫ +1

−1

[
ai(xi − σu)Fε

(
u +

x−i − xi

σ

)

+ bi(xi − σu)Gε

(
u +

x−i − xi

σ

) ] fε(u)fθ(xi − σu)∫ 1

−1
fε(u)fθ(xi − σu)du

du.

The above expression has a (xi − x−i)/σ term which blows up as σ goes to 0. In order to

have functions that have a continuous limit as σ goes to 0, we define α by x−i = xi + ασ

and abuse notations slightly by denoting ∆w
i (xi, α, σ) ≡ ∆w

i (xi, x−i, σ). We obtain

∆w
i (xi, α, σ) =

∫ +1

−1

[
ai(xi − σu)Fε(u + α)(5)

+ bi(xi − σu)Gε (u + α)
] fε(u)fθ(xi − σu)∫ 1

−1
fε(u)fθ(xi − σu)du

du.

We can now think of a monotone equilibrium as a pair (xi, α), such that ∆w
i (xi, α, σ) =

∆w
−i(xi + ασ,−α, σ) = 0. The essence of our proof technique is to show that this equation

has a unique solution and that it is well behaved in w. To do this we need to understand

how ∆w
i varies with xi, α and σ.

More precisely Lemmas 3, 4 and 5 establish that over a specific range for parameters

(xi, α) which includes any threshold equilibrium for σ small enough: ∆w
i (xi, α, σ) is strictly

increasing in xi and strictly decreasing in α with rates bounded away from 0 independently

of either σ or w; as σ goes to 0; ∆w
i (x, α, σ) converges uniformly over (x, α) ∈ R2 at a rate

that depends only on Λκ,ν,d,ρ,K . As in Lemma 1, given a class Λκ,ν,d,ρ,K , we define ~ ≡ dκ/2

and r = ρ−1(dκ/8).

Lemma 3 Given a class of payoff structures Λκ,ν,d,ρ,K, then there exists σ > 0 such that,
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(i) For all payoff structures w ∈ Λκ,ν,d,ρ,K and σ ∈ (0, σ), all monotone equilibria

(xi, α) of game Γσ(w) are such that α ∈ [−2, 2].

(ii) For all w ∈ Λκ,ν,d,ρ,K, σ ∈ (0, σ) and α ∈ [−2, 2],

∀ xi ∈ [θi(w)− r, θi(w) + r],
∂∆w

i

∂xi

(xi, α, σ) ≥ κ/2 > 0.

(iii) For all w ∈ Λκ,ν,d,ρ,K, σ ∈ (0, σ), xi ∈ [θi(w)− r, θi(w) + r] and α ∈ [−2, 2]

∂∆w
i (xi, α, σ)

∂α
≤ −~

∫ 1

−1

fε(u + α)
fε(u)fθ(xi − σu)∫ 1

−1
fε(u)fθ(xi − σu)du

du ≤ 0.

Lemma 3 guarantees that the solutions to ∆w
i (xi, α, σ) = 0 will be well-behaved when w and

σ vary. This allows us to state our first selection result which says that for all σ less than

some σ small enough, selection happens jointly for all games with payoffs in Λκ,ν,d,ρ,K . It

does not discuss how the selected equilibria behave as σ goes to 0. This will be the object

of Theorem 3.

Theorem 2 (joint selection) There exists σ > 0 sufficiently small such that for all σ ∈
(0, σ) and w ∈ Λκ,ν,d,ρ,K, all global games Γσ(w) have a unique pair of rationalizable strategies.

Proof: Take σ such that Lemma 3 holds. We know from Theorem 1 that the set of rational-

izable strategies is bounded by monotone equilibria, so it suffices to show there is a unique

monotone equilibrium. Such an equilibrium is characterized by a pair (xi, α) such that,

∆w
i (xi, α, σ) = ∆w

−i(xi +ασ,−α, σ) = 0. From parts (ii) and (iii) of Lemma 3, we know that

∆w
i is strictly increasing in xi and weakly decreasing in α. Thus, the first equilibrium condi-

tion ∆w
i (xi, α) = 0 implicitly defines a function α(xi) that is weakly increasing in xi. Replace

that in the other equilibrium condition: xi is such that ∆w
−i(xi +α(xi)σ,−α(xi), σ) = 0. De-

fine ζ(xi, σ, w) ≡ ∆w
−i(xi + α(xi)σ,−α(xi), σ). Lemma 3 implies that this function is strictly

increasing in xi which implies there is at most a unique value xi satisfying ζ(xi, σ, w) = 0.

Existence results from Assumption 3. Using Theorem 1 we conclude that there is a unique

pair of rationalizable strategies. ¥
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We now proceed to show that as σ goes to 0, this uniquely selected equilibrium converges

to the risk-dominant strategy uniformly over Λκ,ν,d,ρ,K . Since we already know pointwise

convergence, this is equivalent to showing that the zeroes of ∆w
i (xi, α, σ) converge uniformly

as σ goes to 0. For this, we need to show that ∆w
i (·, ·, σ) converges uniformly, and that

∂∆w
i

∂α

is uniformly bounded away from 0.

Lemma 4 Consider a class Λκ,ν,d,ρ,K, there exists N > 0 such that for all w ∈ Λκ,ν,d,ρ,K,

|∆w
i (x, α, σ)−∆w

i (x, α, 0)| ≤ N max{ρ(σ), σ}.

Without loss of generality, we can always assume that ρ(σ) ≥ σ. Indeed if a function has a

modulus of continuity ρ, it has a modulus of continuity ρ̃ for all ρ̃ greater than ρ.

Lemma 5 Given a family of payoff structures Λκ,ν,d,ρ,K, there exists σ > 0, λ > 0 and η > 0

such that whenever σ ∈ (0, σ) and w ∈ Λκ,ν,d,ρ,K, any monotone equilibrium (xi, α) of Γσ(w)

is such that,

1. α ∈ [−2 + λ, 2− λ]

2. ∀xi ∈ [θi − ν, θi + ν], ∀α ∈ [−2 + λ, 2− λ],

∂∆w
i (xi, α, σ)

∂α
< −η

3. Denote by α(xi, w) the implicit function solving ∆w
i (xi, α, σ) = 0. For all xi in [θi −

ν, θi + ν], α(xi, w) is ( 4
η
)-Lipschitz in w, with respect to the norm on payoff structures

defined by, ||w − w̃|| ≡ maxi,j,k∈{1,2}3 ||wi
jk − w̃i

jk||∞.

We can now state the main result of the paper.

Theorem 3 (uniform convergence) Consider a class of payoffs Λκ,ν,d,ρ,K. We know from

Theorem 2 that for σ ∈ (0, σ), all games Γσ(w) have a unique pair of rationalizable strate-

gies, with thresholds (xi(w, σ), x−i(w, σ)). As σ goes to 0, the equilibrium threshold xi(w, σ)

converges uniformly over Λκ,ν,d,ρ,K to the risk-dominant threshold. More formally,

lim
σ→0

max
w∈Λκ,ν,d,ρ,K

|xi(w, σ)− xi(w, 0)| = 0.
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Proof: First, from Lemmas 4 and 5, we know that |∆w
i (x, α, σ) − ∆w

i (x, α, 0)| < Nρ(σ)

and that ∂∆
∂α

< −η. This implies that the solution α(x, σ) to ∆w
i (x, α, σ) = 0 must satisfy

(6) |α(x,w, σ)− α(x,w, 0)| ≤ Nρ(σ)

η
.

Recall the definition, ζ(x,w, σ) ≡ ∆w
−i(x + α(x,w, σ)σ,−α(x,w, σ), σ). A real number x

is an equilibrium threshold of Γσ(w) if and only if ζ(x,w, σ) = 0. For all w ∈ Λκ,ν,d,ρ,K ,

the functions ∆w
i share a common modulus of continuity. Hence inequality (6) implies that

ζ(·, ·, σ) converges uniformly to ζ(·, ·, 0). From Lemma 3 we know that ∂−ζ
∂x

> κ/2. This

yields that

max
w∈Λκ,ν,d,ρ,K

|xi(w, σ)− xi(w, 0)| ≤ 2

κ
max

w∈Λκ,ν,d,ρ,K

||ζ(·, w, σ)− ζ(·, w, 0)||∞

which concludes the proof since ζ(·, ·, σ) converges uniformly as σ goes to 0. ¥
Theorem 3 implies that in the example given in the introduction, the principal’s optimal

level of capital stock for σ positive does converge to the optimal capital stock in the risk-

dominant equilibrium, as long as the family of payoffs indexed by k belongs to some regular

class Λκ,ν,d,ρ,K . See Appendix A.1 for an example where this condition is not satisfied and

uniform selection fails.

The next proposition deals with the continuity of the selected equilibrium with respect

to the payoff structure. This continuity result is useful in applications, for instance to ensure

the existence of maxima at σ small but strictly positive.

Proposition 3 (continuous selection) Consider a class of payoff structures Λκ,ν,d,ρ,K.

There exists σ > 0 such that for all σ ∈ (0, σ), the selected equilibrium threshold xi(w, σ) is

a continuous function of the payoff structure w.

4 Conclusion

The approach of global games taken in this paper stresses the fact that when players base

their actions on noisy continuous signals, their payoffs should be continuous in those signals.

This gives additional constraints on equilibria which can be exploited to prove uniform
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selection results over fairly general classes of payoffs.

These uniform selection results are handy tools for applied economists wishing to use

the global games approach to study more intricate game structures. For instance, in the

agency problem presented in the introduction, we have sufficient conditions guaranteeing

that the limit of the principal’s behavior is indeed the best response to the limit of the

agents’ behavior.

Finally, because these uniform selection results hold over general classes of payoffs, they

also allow to apply global games selection recursively and may prove useful to extend the

use of such an information structure to dynamic games.

Appendix A: Two examples

This section presents two examples respectively illustrating that: mistakenly assuming uni-

form selection may generate the wrong predictions; and that simpler proofs of uniform se-

lection based on the monotonicity of thresholds are often not available.

A.1 A failure of uniform selection

Consider the problem of a principal trying to get his two agents to tryout a new technology

(action C), which is potentially more productive than the old one (action D), but is also

more sensitive to exogenous macroeconomic variations (parameter θ, which we take normally

distributed). When agents play C, the final output depends on macro conditions via a

countably infinite number of channels. The principal can affect the game agents play by

shutting off such channels of dependence. When the principal shuts off n channels, the game

played by agents has symmetric payoffs wn

C D

C g(n)θ + 1 g(n)θ − 2

D 0 0

where n ∈ N and g is a decreasing, strictly positive function such that g(0) = 1. For any n

and a noise level σ, this defines a game Γσ(wn). Let us denote c(n) the strictly increasing

cost of shutting down n channels. Assume that σ is small but positive, what is the optimal

number of channels for the principal to shut down?
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We distinguish two cases, whether limn→∞ g(n) > 0 (case 1) or limn→∞ g(n) = 0 (case

2). In case 1, the family of payoffs {wn}n∈N satisfies Definition 4, while in case 2 it doesn’t

(it fails requirement 2 and 3).

Under case 1, Theorem 3 holds. Hence, when σ is small, for any n ∈ N, the player’s

behavior is close to the risk-dominant strategy, which is to play C if and only if

θ ≥ 1

2g(n)
.

This means that it is actually harder for players to coordinate on C when n increases. Since

c(n) is strictly increasing, for σ small, it will be optimal for the principal not to hedge the

players from macroeconomic shocks.

Under case 2, Theorem 3 does not hold any more. In fact the following lemma holds

Lemma 6 For any fixed value of σ > 0, there exist values of n large enough such that the

game Γσ(wn) has multiple extreme equilibria, in one of which players coordinate on C with

probability close to one.

If limn→∞ c(n) isn’t too large this means it might actually be optimal for the principal to

provide enough insurance so that it becomes possible for players to coordinate on C with

high probability. Clearly, mistakenly assuming that uniform selection held would have led

to the wrong prediction.

Proof of Lemma 6: This is simply an instance of lower hemicontinuity with respect to

payoffs. The proof is still given for completeness. Since the game is symmetric, we look for

symmetric equilibria characterized by a coordination threshold x ∈ R. For σ > 0, equilibrium

thresholds are characterized by the equation ζ(x, n, σ) = 0, where,

ζ(x, n, σ) =

∫ 1

−1

{[g(n)(x− σu) + 1] Gε(u) + [g(n)(x− σu)− 2] Fε(u)}

× fθ(x− σu)fε(u)∫ 1

−1
fθ(x− σũ)fε(ũ)dũ

du

Define Ψ(x, u, σ) ≡ fθ(x−σu)fε(u)R 1
−1 fθ(x−σũ)fε(ũ)dũ

and note that Ψ is a probability distribution over
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[−1, 1]. We have

ζ(x, n, σ) = g(n)

(
x + σ

∫ 1

−1

uΨ(x, u, σ)du

)

︸ ︷︷ ︸
≡ζ1(x,n,σ)

+

∫ 1

−1

[3Gε(u)− 1]Ψ(x, u, σ)du

︸ ︷︷ ︸
ζ2(x,σ)

Given that θ is normally distributed, simple algebra shows that as x becomes large and

positive, then Ψ(x, u, σ) puts all of the probability mass on u = 1. Similarly, when x is large

and negative, then Ψ(x, u, σ) puts all of the probability mass on u = −1. This implies that

lim
x→−∞

ζ2(x, σ) = 1 and lim
x→+∞

ζ2(x, σ) = −2.

Hence pick any x > 0 large enough so that ζ2(x, σ) < 0 and ζ2(−x, σ) > 0. Since

limn→∞ g(n) = 0, there exists n∗ large enough so that ζ(x, n, σ) < 0 and ζ(−x, n, σ) > 0.

Since for any n ∈ N,

lim
x→−∞

ζ(x, n, σ) = −∞ and lim
x→+∞

ζ(x, n, σ) = +∞

we obtain that the game Γσ(wn∗) has an equilibrium with threshold less than −x and an

equilibrium with threshold greater than x. Since x can be taken as large as wanted, this

concludes the proof. ¥

A.2 Non-monotonic comparative statics

Appendix A.1 makes the point that uniform selection isn’t granted. One might however

wonder whether in specific settings for which payoffs are indexed by a real variable k, sim-

pler proofs of uniform selection based on the monotonicity in k of coordination thresholds

xi(wk, σ) are available. This section shows that such monotonicity shouldn’t be typically

expected by giving a natural example in which the risk-dominant threshold itself isn’t mono-

tonic.

Consider two firms deciding to switch technology or not in a setting with complementar-

ities. Payoffs to the new technology depend on a parameter θ (normally distributed) while

payoffs to the old technology depend on a common-knowledge parameter k ∈ [0, +∞). More
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precisely, payoffs wk take the form

C D

C θ θ − k − k2

D −k −k

When k is large, then it is valuable for the players to coordinate on C. Indeed, under

complete information, the Pareto efficient equilibrium is to switch technology if and only

if θ ≥ −k. The worse the baseline option, the more valuable it is for players to switch

technology.

The risk-dominant equilibrium on the other hand is to switch if and only if θ ≥ −k+k2/2.

Hence, as k increases, the switching threshold first decreases while k ∈ [0, 1] and then

increases over the range [1, +∞). Indeed, when the old technology gets worse, the gains

from switching get larger, however the cost of switching alone also get larger at an increasing

rate. These two effects result in a non-monotonic switching threshold: switching is easiest

when the old technology is bad but not too bad. When the old technology is very bad, the

players’ fear freezes them into immobilism.

This example illustrates the point that in cases of interest, where considering the risk-

dominant thresholds might reverse comparative statics under complete information, the co-

ordination thresholds for σ > 0 are likely to be non-monotonic in the underlying parameter.

Appendix B: Extension to games with a continuum of

players

Here we briefly outline why results presented in Section 3 still hold in symmetric games with

a continuum of agents.

We consider games with a continuum of agents indexed by t ∈ [0, 1]. Each player has an

action set {C, D}. All decisions are taken simultaneously. Let us denote by q the proportion

of players choosing to play C. Players have identical payoffs which depend on their own

action a ∈ {C, D}, the aggregate outcome q, and a state of the world θ, with convex support

I ⊂ R, and a C1 density fθ. Let these payoffs be denoted by UC(q, θ) and UD(q, θ). Before

taking action, player t gets a signal xt = θ + σεt, where εt has support in [0, 1] and all draws

are independent. We denote Γσ(u) this global game.

We define the class of game structures Hκ,ρ as follows,
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Definition 7 Given a modulus of continuity ρ and a number κ > 0, we denote by Hκ,ρ the

class of payoff structures U such that,

1. For all q ∈ [0, 1], the functions UC(q, ·) and UD(q, ·) have a modulus of continuity rho

with respect to θ.

2. The mapping m : (q, θ) 7→ UC(q, θ)−UD(q, θ) is strictly increasing in both θ and q with

lower rates greater than κ.

3. There exist θ and θ in I such that m(0, θ) > 0 and m(1, θ) < 0.

To simplify analysis, Definition 7 assumes that the games are fully supermodular. As in

the case of two player games it is possible to work under the weaker assumption that the

game has strictly increasing differences in the state of the world, and that at all states θ,

the perfect information version of the game that players face is either dominance solvable

or exhibits increasing differences in q. For the sake of concision, this appendix will not deal

with that level of generality.

Because we have assumed that payoff structures were supermodular, it follows that game

Γσ(U) has extreme Nash equilibria which are symmetric. A proof identical to that of Propo-

sition 2 shows that for σ small enough, these equilibria take a threshold form, meaning that

there is a threshold x such that player t chooses C when xt > x and D when xt < x.

Consider the incentives of player t when other players use threshold x. The proportion

of people choosing C is q = P
[
ε > x−θ

σ

]
. Thus payoffs are given by

ΠC(xt, x, σ) =

∫

I

UC

(
P

[
ε >

x− θ

σ

]
, θ

)
f(θ|xt)dθ(7)

ΠD(xt, x, σ) =

∫

I

UD

(
P

[
ε >

x− θ

σ

]
, θ

)
f(θ|xt)dθ.(8)

For x to be an equilibrium threshold, it must be that player is indifferent between C and

D when xt = x. Thus equilibrium is characterized by the equation

(9) ∆U(x, x, σ) ≡
∫

I

m

(
P

[
ε >

x− θ

σ

]
, θ

)
f(θ|xt)dθ = 0.

Do the change in variable u = x−θ
σ

, equation (9) becomes,

(10) ∆U(x, x, σ) ≡
∫ 1

−1

m (P [ε > u] , x− σu)
fε(u)fθ(x− σu)∫ 1

−1
fε(u)fθ(x− σu)du

du = 0.
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As in Section 3, we define Ψσ by

Ψσ(x, u) =
fε(u)fθ(x− σu)∫ 1

−1
fε(u)fθ(x− σu)du

Lemma 8 establishes that Ψσ(u, x) converges uniformly to fε(u) as σ goes to 0 and that ∂Ψ
∂x

converges uniformly to 0.

We also have that ∂m
∂x

> κ. Finally because we consider only symmetric games, we know

that the α term that we needed to consider in section 3 is equal to zero.

This implies that uniformly over any compact,

lim
σ→0

∆(x, x, σ) =

∫ 1

−1

m (P [ε > u] , x) fε(u)du =

∫ 1

−1

m(u, x)du

and that the solutions of the equation ∆(x, x, σ) = 0 converge to the risk-dominant equilib-

rium, that is, the solution of equation
∫ 1

−1
m(u, x)du = 0.

More precisely Theorems 2 and 3 extend as follows,

Theorem 4 Consider a class of payoffs Hκ,ρ. There exists σ such that for all σ < σ, and

all U ∈ Hκ,ρ, all games Γσ(U) have a unique pair of rationalizable strategies, with threshold

x(U, σ). As σ goes to 0, the equilibrium threshold x(U, σ) converges uniformly over Hκ,ρ to

the risk-dominant equilibrium.

Proof: The proofs are identical to those of Theorems 2 and 3. Joint selection is proven

by showing that for some σ, σ ∈ (0, σ) implies that ∆(x, x, σ) is strictly increasing in x.

Uniform convergence results from the fact that the rate of convergence of x(U, σ) has an

upper bound that depends only on k and ρ. ¥

Appendix C: Proofs

Proof of Lemma 1: For the first inclusion: we have by definition bi
w(θi) = 0 and

ai
w(θi) = 0. Since bi

w and ai
w both have lower rates greater than κ, this implies that for all

w,

∀θ ∈ [θi, θi], hi
w(θ) = bi

w(θ)− ai
w(θ) = bi

w(θ)− bi
w(θi) + ai

w(θi)− ai
w(θ)(11)

≥ κ(θ − θi) + κ(θi − θ) ≥ dκ.

20



Since all components of w have a modulus of continuity ρ, hi
w has a modulus of continuity

4ρ. This implies that whenever |x− y| ≤ ρ−1(dκ/8), then |hi
w(x)− hi

w(y)| < dκ/2. For any

θ ∈ [θi − ρ−1(dκ/8), θi + ρ−1(dκ/8)], there exists θ̃ such that θ̃ ∈ [θi, θi] and |θ − θ̃| < dκ/2.

Using inequality (11) we get that,

∀θ ∈ [θi − ρ−1(dκ/8) , θi + ρ−1(dκ/8)], hi
w(θ) ≥ hi

w(θ̃)− |hi
w(θ̃)− hi

w(θ)| ≥ dκ/2

which concludes the proof. ¥

Lemma 7 (rationalizable strategies) For all σ ≥ 0 and any strategy s, BRi(s) ⊂ [sθi−σ, sθi+σ].

Moreover, a rationalizable strategy s has to belong to ∩i∈{1,2}[sθi−2σ, sθi+2σ].

Proof: For the first part: whenever she gets a signal x < θi − σ, player i knows that D is

dominant in all possible games G(θ) given her signal. Thus it is dominant for her to play D.

Similarly, whenever x > θi + σ, it is dominant for her to play C in all possible games G(θ).

For the second part: a rationalizable strategy s is a best response of i to some strategy

s−i which is itself a best response of player −i to an other strategy of i. The first part of

the lemma implies that, s ∈ [sθi−σ, sθi+σ] and s−i ∈ [sθ−i−σ, sθ−i+σ]. Thus, whenever she gets

a signal x < θ−i − 2σ, player i knows that player −i will play D. Because w is regular,

Assumption 1 implies player i must choose to coordinate on D. Respectively, when she gets

a signal x > θ−i + 2σ, player i knows that player −i will play C and coordinates on C. This

proves the result. ¥

Proof of Proposition 1: The proof is given for BRi,L. Player i’s best response is to

cooperate if and only if ∆w
i (xi, s) > 0. For all x ∈ [θi − r/2, θi + r/2], we must have

θ ∈ [θi − r, θi + r]. This implies hi(θ) ≥ ~ ≥ 0. Thus, when s′ 4 s, ∀x ∈ [θi − r/2, θi + r/2],

∆w
i (x, s) = E[wi

12 − wi
22 + (wi

11 − wi
21 − wi

12 + wi
22)︸ ︷︷ ︸

=hi(θ)≥0

1s=C |x]

≥ E[wi
12 − wi

22 + (wi
11 − wi

21 − wi
12 + wi

22)1s′=C |x] ≥ ∆w
i (x, s′).

The best response is to play C if and only if ∆w
i > 0. Thus whenever x ∈ [θi− r/2, θi + r/2],

BRi,L(s′)(x) = C ⇒ BRi,L(s)(x) = C. Finally we know from Lemma 7 that if x < θi−r/2 ≤
θi − σ, then BRi,L(s′)(x) = BRi,L(s)(x) = D. Similarly if, x > θi + r/2 ≥ θi + σ then

BRi,L(s′)(x) = BRi,L(s)(x) = C. This implies that indeed, BRi,L(s′) 4 BRi,L(s). An iden-
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tical proof holds for BRi,H . ¥

Lemma 8 (convergence of beliefs) Define Ψ(xi, u) by

Ψ(xi, u) ≡ fε(u)fθ(xi − σu)∫ +1

−1
fε(ũ)fθ(xi − σũ)dũ

.

Then, uniformly over K × [−1, 1],

(i) limσ→0 Ψ(xi, u) = fε(u)

(ii) limσ→0
∂Ψ
∂xi

(xi, u) = 0.

Proof: The proof exploits the assumption that fθ is C1, and that over the relevant range,

fθ(xi) > 0. The proof of (i) is straightforward. For (ii), we have that

∂Ψ

∂xi

=
fεf

′
θ∫ 1

−1
fε(u)fθ(xi − σu)du

− fεfθ

∫ 1

−1
fε(u)f ′θ(xi − σu)du

[∫ 1

−1
fε(u)fθ(xi − σu)du

]2 .

Hence,

lim
σ→0

∂Ψ

∂xi

=
fε(u)f ′θ(xi)

fθ(xi)
− fε(u)fθ(xi)f

′
θ(xi)

fθ(xi)2
= 0.

which concludes the proof. ¥

Lemma 9 (bounded differences) Consider a class of payoffs Λκ,ν,d,ρ,K then there exists

M > 0 such that for any θ ∈ K, and any payoff structure w ∈ Λκ,ν,d,ρ,K, we have |ai
w(θ)| < M

and |bi
w(θ)| < M.

Proof: The payoff structure w is such that ai
w and bi

w have zeroes in K. Since payoff

functions of w have a modulus of continuity ρ, both ai
w and bi

w have a modulus of continuity

2ρ. Since K is compact, this implies that there exists M depending only on K and ρ such

that |ai
w(θ)| < M and |bi

w(θ)| < M. ¥

Proof of Proposition 2: Consider the function ∆w
i (xi, sx). A best response to sx is

characterized by the solutions of equation ∆w
i (xi, sx) = 0. Thus, it suffices to show that
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∆w
i (·, sx) is strictly increasing in its first argument.

∆w
i (xi, sx) = E[(wi

12 − wi
22)1x−i<x + (wi

11 − wi
21)1x−i>x|xi, sx].

We have already defined ai(θ) = wi
12(θ)−wi

22(θ) and bi(θ) = wi
11(θ)−wi

21(θ). Denote Fε the

cumulative distribution function of ε and define Gε = 1− Fε. We can write

(12) ∆w
i (xi, sx) =

∫ +∞

−∞

[
ai(θ)Fε

(
x− θ

σ

)
+ bi(θ)Gε

(
x− θ

σ

)]
f(θ|xi)dθ.

Do the change in variable u = xi−θ
σ

,

∆w
i (xi, sx) =

∫ +1

−1

[
ai(xi − σu)Fε

(
x− xi

σ
+ u

)
+ bi(xi − σu)Gε

(
x− xi

σ
+ u

)]

︸ ︷︷ ︸
≡φ(xi,u)

× fε(u)fθ(xi − σu)∫ +1

−1
fε(ũ)fθ(xi − σũ)dũ︸ ︷︷ ︸

=Ψ(xi,u)

du.

This yields that,
∂∆w

i

∂xi

(xi, sx) ≥
∫ +1

−1

∂−φ

∂xi

Ψdu +

∫ +1

−1

φ
∂Ψ

∂xi

du.

Observe that
∂−φ

∂xi

≥ ∂−ai
w

∂xi

Fε +
∂−bi

∂xi

Gε +
1

σ
(bi − ai)fε.

Using the assumption of strictly increasing differences in the state of the world and Lemma

1, we obtain that ∂−φ
∂xi

> κ > 0. This, joined with Lemmas 8 and 9 yields that there exists

σ > 0 such that for all σ ∈ (0, σ), w ∈ Λκ,ν,d,ρ,K and all xi ∈ [θi(w)− ν, θi(w) + ν],

∂∆w
i

∂xi

(xi, sx) ≥ κ/2 > 0.

This proves the first part of the proposition. For the second part of the proposition, note

that equation (12) implies that ∆w
i (xi, sx) is continuous in xi and x. The continuity and

strict monotonicity of ∆w
i imply that the solution xi(x) to ∆w

i (xi, sx) = 0 is continuous in

xs. ¥

Proof of Lemma 3: The proof of part (i) is straightforward. Consider a potential
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equilibrium threshold xi. If player −i gets a signal x < xi − 2σ or x > xi + 2σ, then she

knows for sure what player i does. Because w is regular, Assumption 1 implies player −i

must choose the same action. This implies that if (xi, α) is an equilibrium, then α ∈ [−2, 2].

This conclude the proof of part (i).

Let us now prove part (ii). Define

ξ(xi, α, u) = ai(xi − σu)Fε(u + α) + bi(xi − σu)Gε (u + α)(13)

We have that,

(14)
∂∆w

i

∂xi

≥
∫ 1

−1

[
∂−ξ

∂xi

Ψ + ξ
∂Ψ

∂xi

]
du.

From equation (13) and by definition of Λκ,ν,d,ρ,K , we obtain that

(15)
∂−ξ

∂xi

≥ ∂−ai
w

∂θ
Fε +

∂−bi
w

∂θ
Gε ≥ κ.

Moreover, we have

(16)
∂Ψ

∂xi

=
fεf

′
θ∫ 1

−1
fε(u)fθ(xi − σu)du

− fεfθ

∫ 1

−1
fε(u)f ′θ(xi − σu)du

[∫ 1

−1
fε(u)fθ(xi − σu)du

]2 .

Moreover, by Lemma 8 we know that uniformly over [θi(w)− r, θi(w) + r],

(17) lim
σ→0

∂Ψ

∂xi

=
fε(u)f ′θ(xi)

fθ(xi)
− fε(u)fθ(xi)f

′
θ(xi)

fθ(xi)2
= 0.

By Lemma 9, there exists a constant M ∈ R such that for all w ∈ Λκ,ν,d,ρ,K and all θ ∈ K,

(18) |ξw(θ, α, u)| < |ai
w(θ)|+ |bi

w(θ)| < M.

Equations (17) and (18) imply there exists σ small enough such that whenever σ ∈ (0, σ),

then
∣∣∣ξ ∂Ψ

∂xi

∣∣∣ ≤ κ/2. This and equation (15) imply that over K,
∂∆w

i

∂xi
> κ/2. This concludes

the proof of part (ii).

We now turn to the proof of part (iii). We know from equation (5) that ∆w
i is differentiable
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in α. We have,
∂∆w

i

∂α
≤

∫ 1

−1

∂+ξ

∂α
Ψdu.

Moreover,

∂ξ

∂α
(xi, α, u) =

[
ai(xi − σu)− bi(xi − σu)

]
fε(u + α)

= −hi
w(xi − σu)fε(u + α).

By Lemma 1, for all θ ∈ [θi(w)− r, θi(w) + r] we have hi
w(θ) ≥ ~. This yields,

(19)
∂ξ

∂α
(xi, α, u) ≤ −~fε(u + α).

Integrating over [−1, 1], we obtain

∂∆w
i (xi, α, σ)

∂α
≤ −~

∫ 1

−1

fε(u + α)Ψ(xi, u)du < 0.

This concludes the proof of part (iii). ¥

Proof of Lemma 4: All payoff functions w in Λκ,ν,d,ρ,K share a common modulus of

continuity. By Lemma 9, we know that there exists M such that for all w ∈ Λκ,ν,d,ρ,K , we

have |ai
w|+ |bi

w| < M over K. Denoting by || · ||∞ the supremum norm, this implies that

|∆w
i (x, α, σ)−∆w

i (x, α, 0)| ≤ 4ρ(σ) + M ||f ′θ||∞ σ.

This shows there exists N > 0 independent of w such that |∆w
i (x, α, σ)−∆w

i (x, α, 0)| ≤
N max{ρ(σ), σ}. ¥

Proof of Lemma 5: A monotone equilibrium is characterized by a pair (xi, α) such that

∆w
i (xi, α, σ) = ∆w

−i(xi + ασ,−α, σ) = 0. We know from Lemma 7 that whenever σ < ν

xi ∈ ∩i∈{1,2}[θi − ν, θi + ν]. Moreover, we must have α ∈ [−2, 2].

Let us first show the tighter bounds on equilibrium values of α. Define χw
σ (xi, α) =

∆w
i (xi, α, σ) −∆w

−i(xi + ασ,−α, σ). If (xi, α) is an equilibrium, then χw
σ (xi, α) = 0. At the
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limit where σ = 0, we have,

χw
0 (xi, α) =

∫ 1

−1

[
ai

w(xi)Fε(u + α) + bi
w(xi)Gε(u + α)(20)

−a−i
w (xi)Fε(u− α)− b−i

w (xi)Gε(u− α)
]
fε(u)du

Which yields,

χw
0 (xi,−2) = bi

w(xi)− a−i
w (xi) ≥ dκ(21)

χw
0 (xi, 2) = ai

w(xi)− b−i
w (xi) ≤ −dκ(22)

Over this range, we know there exists M dependent only on ρ and K such that |bi
w|+ |a−i

w | <
M . Moreover, fε is bounded over [−1, 1]; thus we conclude from equation (20), that there

exists a constant Q > 0 such that χw
0 (xi, α) is Q-Lipschitz in α. This and equations (21)

and (22) imply that,

χw
0 (xi, α) ≥ dκ−Q(α + 2)

χw
0 (xi, α) ≤ −dκ + Q(2− α)

Finally, using Lemma 4, we know there exists N depending only on ρ and K such that

χw
σ (xi, α) ≥ dκ−Q(α + 2)−Nρ(σ)(23)

χw
σ (xi, α) ≤ −dκ + Q(2− α) + Nρ(σ)(24)

T Using equations (23) and (24) and the fact that at an equilibrium (xi, α), we must have

χw
σ (xi, α) = 0, we obtain that whenever (xi, α) is an equilibrium, then we must have

(25) α ∈
[
−2 +

dκ−Nρ(σ)

Q
, 2− dκ−Nρ(σ)

Q

]
.

Since ρ(·) is decreasing, this proves (i) and allows us to take for some σ small enough

λ ≡ dκ−Nρ(σ)

Q
> 0.
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From Lemma 3, we know that,

∂∆w
i (xi, α, σ)

∂α
≤ −~

∫ 1

−1

fε(u + α)Ψ(xi, u)du.

Hence there exists η > 0 such that for all w ∈ Wr and all α ∈ [−2 + λ, 2− λ],

(26) −~
∫ 1

−1

fε(u + α)fε(u)du < −2η.

Since by Lemma 8 we know that Ψ(xi, u) converges to fε(u) over any compact, there exists

σ > 0 such that for all σ ∈ (0, σ) and all α ∈ [−2 + λ, 2− λ],

(27)
∂∆w

i (xi, α, σ)

∂α
< −η.

This proves part (ii). Part (iii) is now straightforward:given α and xi and σ, the function

∆w
i (xi, α, σ) is 4-Lipschitz in w; this and equation (27) yields that α(xi, w, σ) is ( 4

η
)-Lipschitz

in w. ¥

Proof of Proposition 3: Pick σ such that Theorem 2 holds. Note that ∆w
i (xi, α, σ) is

continuous in w. In fact it is 4−Lipschitz in w. This and Lemma 5 implies that the im-

plicit function α(xi, w) is strictly increasing in xi and ( 4
η
)-Lipschitz in w. Thus the function

ζ : xi 7→ ∆w
−i(xi + α(xi)σ,−α(xi), σ) is continuous in the payoffs and strictly increasing in

xi. This implies that the solution to ∆w
i (xi +α(xi)σ,−α(xi), σ) = 0 is a continuous function

of the payoff w. This concludes the proof. ¥
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