
The Cost of Imbalance in Clinical Trials

Sylvain Chassang∗

Princeton University and NBER

Rong Feng

New York University

September 7, 2020

Abstract

Clinical trials following the “gold standard” of random assignment frequently use in-

dependent lotteries to allocate patients to treatment and control arms. Unfortunately,

independent assignment can generate treatment and control arms that are unbalanced

(i.e. treatment and control populations with significantly different demographics). This

is regrettable since other assignment methods such as matched pair designs ensure bal-

ance across arms while maintaining randomization and permitting inference.

This paper seeks to measure the cost of imbalance with respect to gender in a

sample of roughly 2000 clinical studies. We document significant imbalance: 25% of

experiments have at least 26% more men in one treatment arm than in the other. In

addition, clinical trials with greater imbalance have more dispersed treatment effects,

indicating that imbalance reduces the informativeness of experiments. A simple struc-

tural model suggests that for a typical experiment, using a balanced random design

could deliver informativeness gains equivalent to increasing the sample size by 18%.
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1 Introduction

It is well known that randomized controlled trials in which treatment is assigned indepen-

dently across patients can result in treatment and control groups whose observable char-

acteristics are significantly different (Treasure and MacRae (1998), Bruhn and McKenzie

(2009), Morgan and Rubin (2015), Banerjee et al. (2020)). Figure 1 illustrates the issue.

Consider an experiment where we shuffle eight patients, four men and four women, into two

equal-sized treatment arms. It is entirely possible that three women are assigned to arm 1

and three men are assigned to arm 2. As a result arm 1 is 75% female and arm 2 is 75%

male.

Figure 1: Random treatment assignment leading to equal-sized but unbalanced treatment
arms.

Imbalance with respect to characteristics such as gender is problematic because it makes

experiments less informative. When men and women have different medical outcomes on

average, differences in mean outcomes between the two arms may be driven by imbalance

with respect to gender, rather than by treatment efficacy. This is particularly problematic

since medical databases such as clinicaltrials.gov report unconditional average treatment

effects but not treatment effects conditional on gender.

Importantly, there exist simple and well understood random assignment procedures that

ensure balance with respect to target characteristics (Bugni et al., 2018). Figure 2 illustrates
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a matched-pair design in which patients of each gender are matched in pairs (say by order

of arrival), and one member of each pair is randomly assigned to each treatment arm. This

guarantees that gender proportions are equal across both arms while maintaining appropriate

randomization.

Figure 2: A matched-pair design; one member of each pair is randomly assigned to each
treatment arm.

This paper has two objectives: (i) to assess the prevalence of balance issues in medical

trials; (ii) to evaluate the informational benefits from adopting balanced experiment designs.

2 Data and Descriptive Statistics

We study the issue of balance with respect to gender in medical trials registered with the

clinicaltrials.gov database. We focus on gender for three reasons: (i) it is systematically

collected; (ii) it is likely to affect medical outcomes; (iii) experiment designs ensuring balance

over binary characteristics are readily available, and well understood (Bugni et al., 2018).

Naturally, similar concerns apply to other demographics, such as age, or ethnicity.

Source. We searched the clinicaltrials.gov database for all non-gender-specific interven-

tional trials meeting the following joint conditions: (i) trials consisting of exactly two treat-
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ment arms; (ii) trials reporting gender counts for both arms;1 (iii) trials with exactly one

primary outcome, reporting means and standard deviations, (iv) trials with least 20 patients.

At the time of writing this paper, the total number of such studies is 2042.

Summary statistics. Roughly 42% of the studies in our universe were held in North

America, while 35% were held Europe. Sample sizes range from 21 to more than 15 000.

Such large sample sizes are rare: 58% of experiments have less than 100 patients, and 75%

have less than 200 patients. These relatively small sample sizes explain why independent

random assignment can generate unbalanced treatment arms. Both private for-profit and

not-for-profit sponsors are well represented: 54% of studies have private non-profit lead

sponsors, such as Mass. General Hospital, the Mayo Clinic, or Duke University; 40% of

the studies have lead sponsors from industry, such as GlaxoSmithKline, Novartis, or Novo

Nordisk. The remainder of studies in our sample have public sponsors, such as the NIH.

Documenting imbalance. Our main imbalance measure, Absolute Imbalance, is the

magnitude of the difference between the share of men across the two treatment arms:

Absolute Imbalance =

∣∣∣∣ Number of Men in Arm 1

Number of Patients in Arm 1
− Number of Men in Arm 2

Number of Patients in Arm 2

∣∣∣∣ .
We also report Relative Imbalance, which corresponds to the relative increase in the share

of men from one treatment arm to the other:

Relative Imbalance =
Max Share of Men across Arms

Min Share of Men across Arms
− 1.

We find that medical trials frequently suffer from significant imbalance with respect to

gender. Absolute Imbalance, i.e. the difference in the share of men across treatment arms, is

greater than 5.1 percentage points for 50% of experiments, and greater than 10.5 percentage

1We use patient counts at the onset of the trial, before any potential attrition.
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points for 25% of experiments.

Numbers for Relative imbalance are more expressive: 50% of experiments have at least

12% more men in one arm than the other; 25% of experiments have at least 26% more men in

one arm than in the other. In fact, as Figure 3 shows, there is a long tail of experiments with

large degrees of imbalance. For experiments with sample size less than 100 (which represents

58% of experiments in our sample), imbalance is even more prevalent: 25% have an Absolute

Imbalance greater than 13.4 percentage points, and a Relative Imbalance greater than 34%.
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Figure 3: Distribution of Relative Imbalance.

Imbalance appears to be relatively lower for industry-run trials than non-profit-run trials:

25% of industry-run trials have Relative Imbalance greater than 23%; 25% of non-profit-run

trials have Relative Imbalance greater that 31%. In addition, imbalance appears to be lower

in Phase III than in Phase II trials: 25% of Phase III trials have a Relative Imbalance greater

than 21%; 25% of Phase II trials have a Relative Imbalance greater than 29%.

Our data also lets us evaluate the likely share of experiments already using a balanced

assignment protocol similar to the matched-pair design illustrated by Figure 2. Balanced

designs guarantee that Absolute Imbalance will be essentially 0. Such low levels of Absolute
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Imbalance are very unlikely if a balanced assignment procedure is not used. In our data,

13.3% of experiments have Absolute Imbalance under 1 percentage point. This provides a

ballpark estimate of the number of experiments generated using an intentionally balanced

design.

Effect size and imbalance. The significant degree of imbalance we document is only

problematic if gender affects medical outcomes. We first provide anecdotal evidence that this

is the case, before turning to a structural model specifying a relationship between imbalance,

sample size, and effect dispersion. We define Effect Size as

Effect Size =

∣∣∣∣Mean Outcome in Arm 1−Mean Outcome in Arm 2

Standard Error of Outcomes

∣∣∣∣ .
In words, the Effect Size is the absolute value of the estimated treatment effect, re-expressed

in units of standard errors of the distribution of outcomes. We note that Effect Size is a

convex function of estimated treatment effects. As a result, more noisily estimated treatment

effects increases the expected Effect Size.2

Figures 4 and 5 show that greater Absolute Imbalance is associated with a greater effect

size. Because Figure 4 is somewhat obscured by the density of points with low imbalance

and low effect size, Figure 5 provides an easier-to-read summary statistic: the share of

experiments whose Effect Size is greater than one standard-deviation.

A linear regression of Effect Size on Absolute Imbalance yields a significant positive

coefficient equal to 1.1 (t-stat: 4.45, p-value<0.001, CI: [0.61, 1.57]).3

2We note that the findings illustrated by Figures 4 and 5 could be spuriously generated by omitted vari-
able bias: smaller sample size is associated with both greater Absolute Imbalance and greater expected Effect
Size. The structural model of treatment effects described in Section 3 addresses this issue by appropriately
controlling for sample size.

3We remove outliers and focus on the sample of data such that: Absolute Imbalance is between 2
percentage points and 25 percentage points, Effect Size is below 3SD.
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Figure 4: Greater Absolute Imbalance is associated with greater Effect Size.
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Figure 5: The share of experiments with Effect Size ≥ 1 SD increases with Absolute Imbal-
ance.

3 Measuring the Cost of Imbalance

In this section, we derive a structural relationship between the dispersion of treatment effects,

imbalance and sample size. This structural model allows us to express informational gains

from using balanced designs in terms of increased sample size. We then estimate the model in

our data and evaluate possible informational gains from using intentionally balanced designs.
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3.1 A structural model of treatment effects

Treatment effects for a single experiment. Consider a given experiment consisting of a

treatment and control arm. For any patient whose identity is denoted by i, let Yi ∈ R denote

the patient’s outcome. Let Genderi ∈ {0, 1} denote their gender (with 0 corresponding to

female, and 1 to male). Finally, let Treatmenti ∈ {0, 1} denote treatment status, with 0

corresponding to the control group, and 1 to the treatment group.

We assume that for a given experiment, outcomes are related to treatment status and

gender by a linear Gaussian model:

Yi = scale× (α + β × Treatmenti + γ ×Genderi + εi) (1)

with scale a positive scaling parameter (capturing among other things variation in units),

α, β and γ constant parameters specific to the treatments and conditions being studied, and

εi ∼ N (0, σ) a normally distributed idiosyncratic error term.

Let N0 and N1 denote the number of patients respectively assigned to the control and

treatment groups. Let Y 0 and Y 1 denote the average outcome for patients in the control and

treatment groups. Finally, let G0 and G1 denote the respective share of men in the control

and treatment groups. After averaging and taking differences, equation (1) implies that

Y 1 − Y 0 =
1

N1

∑
i∈ Treated

Yi −
1

N0

∑
j∈Control

Yj

= scale× (β + γ × (G1 −G0) + ∆ε)

with ∆ε a Gaussian error term with distribution N

(
0,

√
σ2

N1

+
σ2

N0

)
Given parameters scale, β, and γ, the variance of individual outcomes Yi in the treatment

and control groups are equal to scale2 × σ2:

V ar(Yi|i ∈ Treatment) = scale2 × σ2 = V ar(Yi|i ∈ Control)
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Hence the weighted average of variances

σ2
U ≡

N1V ar(Yi|i ∈ Treatment) +N0V ar(Yi|i ∈ Control)

N1 +N0

is also equal to scale2 × σ2. Note that σU can be estimated using the sample standard

deviations of outcomes in each group. We define the standardized estimated Treatment

Effect as

Treatment Effect ≡ Y 1 − Y 0

σU
.

The Effect Size reported in Figures 4 and 5 is the absolute value of the Treatment Effect.

Note that this estimated Treatment Effect will typically be different from the true efficacy

of treatment b. We have that

Treatment Effect = b+ c× (G1 −G0) + ∆e (2)

with ∆e a Gaussian error term with distribution N
(

0,

√
1

N1

+
1

N0

)
and b and c parameters

specific to the experiment, respectively equal to β/σU and γ/σU .

Treatment effects across experiments. We now specify a data generating process cap-

turing the distribution of treatment effects in our population of clinical trials. We assume

that coefficients b and c are normally distributed across experiments, following distributions

b ∼ N (0, σb) and c ∼ N (0, σc). Parameters σb, and σc characterize the overall population.

Given equation (2), this implies that

E

[(
Y 1 − Y 0

σU

)2
∣∣∣∣∣G0, G1, N0, N1

]
= σ2

b + σ2
c × (G1 −G0)

2 +
1

N1

+
1

N0

.

Expressed differently,

Treatment Effect2 = σ2
b + σ2

c × Absolute Imbalance2 +
1

N1

+
1

N0

+ error. (3)
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Define the de-biased square effect size (DSES) as

DSES ≡ Treatment Effect2 − 1

N1

− 1

N0

.

Equation (3) implies that we can recover population parameters σ2
b and σ2

c by regressing

DSES on Absolute Imbalance2:

DSES = σ2
b + σ2

c × Absolute Imbalance2 + error. (4)

Cost of imbalance. We measure the cost of imbalance by expressing the information

gains from setting imbalance to 0 in terms of an equivalent increase in sample size. This

additional sample size captures the cost of using an unbalanced random assignment instead

of a balanced assignment such as a matched-pair design.

Given a true efficacy parameter b ∼ N (0, σb), and a given level of Absolute Imbalance,

equation (2) implies that the Treatment Effect of an experiment with equally sized arms

(i.e. with sample sizes N0 = N1 = N/2) provides a signal of true efficacy b with distribution

N (b, σTE) where

σ2
TE = σ2

c × Absolute Imbalance2 +
4

N
. (5)

The variance of the signal provided by the experiment consists of both an idiosyncratic noise

term 4/N that depends only on the sample size, as wells as a term corresponding to the

confounding effect of imbalance with respect to gender.

For a given value of Absolute Imbalance, consider an experiment with sample size N in

which imbalance would be entirely removed. The corresponding signal has the same variance

as the unbalanced experiment with sample size N ′ satisfying

4

N
= σ2

c × Absolute Imbalance2 +
4

N ′

⇐⇒ N ′ =
4

4−N × σ2
c × Absolute Imbalance2

×N. (6)
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This formula lets us measure the informational losses from using unbalanced designs.

Note that this assessment of the informativeness of experiments assumes that inference

relies only on estimated Treatment Effects (as in Bugni et al., 2018). Indeed, it is frequently

the only statistic of outcomes reported in clinical trial databases. Using either treatment

effects conditional on gender, or controlling for gender when estimating treatment effects

would help reduce the confounding impact of gender imbalance on inference.

3.2 Empirical findings

The impact of imbalance on treatment effect dispersion. We now estimate the rela-

tionship between Effect Size and Absolute Imbalance using various specifications. We focus

on the subsample of data such that Absolute Imbalance is greater than 2 percentage points

(exactly balanced experiments are likely to use intentionally balanced designs, suggesting

that they may be different from other experiments), and less than 25 percentage points. In

addition, we remove outliers by focusing on experiments with Effect Size less than 3 units

of standard-deviation.

We first use ordinary least squares (OLS) to estimate the relationship between DSES and

Absolute Imbalance2 including the Inverse Sample Size as a control (specification 2), or not

(specification 1). For greater robustness, we replicate specifications 1 and 2, but estimating

the median of DSES. This specification is less sensitive to outliers.

Table 1 shows that under all specifications, Absolute Imbalance2 has a positive and signif-

icant impact on DSES. The lowest estimate for coefficient σ2
c is equal to 1.24, corresponding

to a value σc ' 1.1. This is the value of σc we retain to assess the value of balanced designs.

The cost of imbalance. The estimated parameter value σc = 1.1 and equation (6) let

us estimate the potential gains from using balanced designs in a typical experiment from

our sample of clinical trials. Set N = 100 (roughly corresponding to the median sample size

of experiments). For experiments with sample size between 75 and 125 subjects, the mean
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OLS Median
(1) (2) (3) (4)

DSES DSES DSES DSES

Intercept 0.35 0.27 0.03 0.02
(0.035) (0.047) (0.007) (0.009)

[<0.001] [<0.001] [<0.001] [0.008]

Absolute Imbalance2 6.91 5.03 1.66 1.24
(2.22) (2.36) (0.44) (0.48)
[0.002] [0.03] [<0.001] [0.008]

Inverse Sample Size — 5.67 — 0.57
(2.43) (0.48)
[0.019] [0.237]

Number of Obs. 1466 1466 1466 1466
R2 .007 .01 0.001 0.001

Table 1: The impact of Absolute Imbalance on Effect Size. Standard errors are given in
parentheses, and p-values in brackets.

Absolute Imbalance is equal to 7.1 percentage points. Plugging-in these values in equation

(6) yields N ′ = 118. In other terms, addressing balance issues (say using a matched-pair

design) yields an increase in the informativeness of experiments equivalent to an 18% increase

in sample size.

4 Conclusion

Imbalance with respect to gender is prevalent in medical trials and significantly reduces the

informativeness of experiments. Better experiment designs would result in speedier trials,

more reliable findings, and greater consistency across Phase II and Phase III trials.

The rarity of balanced random designs in practice is puzzling. One explanation may

be lack of awareness from experimenters. Another explanation is that experimenters worry

that regulators may view balanced designs as a deviation from the “gold standard.” Indeed,
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the European Medicines Agency (EMEA (2004)) cautions against the use of sophisticated

methodologies attempting to achieve balance across many continuous characteristics. How-

ever, seeking balance on an important binary characteristic such as gender seems uncontro-

versial. In order to facilitate the adoption of sensible balanced experiment designs, regulators

should clarify their position on this issue.
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