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We study the design of randomized controlled experiments when
outcomes are significantly affected by experimental subjects’ unob-
served effort expenditure. While standard randomized controlled
trials (RCTs) are internally consistent, the unobservability of ef-
fort compromises external validity. We approach trial design as
a principal-agent problem and show that natural extensions of
RCTs—which we call selective trials—can help improve external
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This paper studies the design of experimental trials when outcomes depend
significantly on unobserved effort decisions taken by subjects (agents).1 Even in
an ideal setting where the experimenter (principal) can randomly and indepen-
dently assign an arbitrarily large number of agents to the treatment and control
groups, unobserved effort limits the informativeness of randomized controlled tri-
als (RCTs). For example, if a technology’s measured returns are low, it is diffi-
cult to distinguish whether this is because true returns are low or because most
agents believe they are low and therefore expend no effort using the technology.
Moreover, to the extent that effort responds to beliefs, and beliefs respond to
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1Throughout the paper we call experimental subjects agents, and call the experimenter the principal.
Following usual conventions, we assume the principal is female, and agents are male.
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information, this makes it difficult to predict the returns to the technology in the
same population as it becomes better informed. In other words, unobserved effort
is a source of heterogeneity in treatment effects, and is a significant challenge to
the external validity of experimental trials.2

We propose simple extensions of RCTs—which we call selective trials—that
improve the external validity of trial results without sacrificing robustness or in-
ternal validity. These experimental designs can be used to determine the extent to
which erroneous beliefs or inappropriate effort affect measured treatment effects.
We provide a systematic analysis of trial design using a principal-agent frame-
work with both adverse selection—an agent’s type is unobserved—and moral
hazard—an agent’s effort is unobserved. However, unlike the standard principal-
agent framework, our principal’s goal is to maximize information about a technol-
ogy’s returns—in the sense of Blackwell—rather than profits. The principal seeks
to achieve this objective through single-agent mechanisms that assign agents to
treatments of varying sophistication based on the message they send.

These mechanisms improve on RCTs for two reasons. First, they let agents
express preferences over their treatment by probabilistically selecting themselves
in or out of the treatment group at a cost—hence the name selective trials.3 This
makes implicit, unobserved selection an explicit part of the experimental design.
Second, these mechanisms allow for treatments of varying richness: in open trials,
treatment corresponds to access to the new technology; in blind trials, treatment
corresponds to an undisclosed allotment of the technology, and information about
the probability of having been allotted the technology; and in incentivized trials,
treatment corresponds to access to the technology as well as an incentive, or
insurance, contract based on outcomes.

Our results fall into two broad categories. Given a type of treatment (open,
blind or incentivized) our first set of results characterize maximally informative
mechanisms and examine the sampling patterns such mechanisms induce. We
show that a mechanism is maximally informative if and only if it identifies an
agent’s preferences over all possible treatment assignments and, given preferences,
still assigns each agent to the treatment or control group with positive probabil-
ity. Thus, our designs encapsulate the data generated by a standard randomized
controlled trial. These designs can be implemented in a number of intuitive ways,
such as a menu of lotteries, or utilizing the design of Becker et al. (1964), referred
to as the BDM mechanism.

While our main focus is on identification, and thus infinite samples, selective tri-
als may impose sampling costs on experimenters. In particular, sampling patterns
do not matter when arbitrarily large samples are available, but affect statistical

2Unobserved effort is an issue whether a trial is open—agents know their treatment status—or blind—
agents’ treatment status is obscured by giving the control group a placebo. See Duflo et al. (2008b) for
a more detailed description of RCTs and the external validity issues frequently associated with them.

3For simplicity, we focus on monetary costs, but selection could also be based on non-monetary costs.
For example, agents could choose between lines with different wait times to place themselves into the
treatment group with different probabilities.
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power in finite samples. In any mechanism that identifies agents’ preferences
in a strictly incentive-compatible way, agents with a higher value for the tech-
nology must be assigned to the treatment group with higher probability, which
can reduce statistical power. However, these sampling costs can be reduced by
diminishing incentives for the truthful reporting of preferences. This allows the
experimenter to strike a balance between sampling costs and the precision of the
preference data that is obtained. As detailed later, these results contribute to re-
cent discussions about the usefulness of charging subjects for access to treatment
in RCTs (see, for instance, Cohen and Dupas, 2010; Dupas, 2009; or Ashraf et
al., 2010).

Our second class of results characterizes what can be inferred from selective
trials, and highlights how they contribute to the ongoing discussion about the
external validity of field experiments (Deaton, 2010; Imbens, 2010). By eliciting
agents’ value for the technology, open selective trials recover the distribution of
returns as a function of willingness to pay. As a result, open trials provide a simple
and robust way to recover the marginal treatment effects (MTEs) introduced by
Heckman and Vytlacil (2005). Identifying MTEs is valuable as they can be used
to forecast the effect of policies that change accessibility of the technology, such
as subsidies. However, MTEs are typically not sufficient to make projections
about interventions that alter beliefs and effort expenditure, such as informational
campaigns.4

Selective trials go beyond MTEs and identify deep parameters by letting agents
express preferences over richer treatments. Specifically, we consider blind trials
where treatment status is hidden from agents by providing the control group
with a placebo. This allows the principal to vary the information an agent has
about his treatment status. This variation can be used to identify the pure ef-
fect of treatment and effort, the effect of their interaction, and agents’ perceived
returns to effort.5 As blind trials are rarely used in economics—often for want
of a convincing, ethical placebo—we extend the analysis to incentivized selective
trials in which agents know their treatment status, but receive different trans-
fers conditional on observable outcomes. Under mild assumptions, this produces

4In addition, selective trials may alleviate subversions of experimental protocol discussed in Deaton
(2010). That is, explicitly allowing the agents to select themselves in and out of treatment may reduce
the number of agents in the control group who obtain the treatment by other means, as well as the
number of agents in the treatment group that refuse to be treated. Furthermore, the principal may use
the information revealed by agents’ preferences to increase monitoring of agents who expressed a high
value for treatment but were assigned to the control group. Malani (2008) proposes a related solution:
a trial design in which agents may select the nature of their control treatment, thus reducing incentives
to subvert the experimental protocol.

5Although uncommon in economics, blind trials are quite common in medicine. For a brief review of
RCTs in medicine see Stolberg et al. (2004). Jadad and Enkin (2007) provides a more comprehensive
review. Selective trials nest a class of trial designs referred to as preference trials, in which at least one
group of agents is allowed to choose their treatment. These designs have primarily been used in medicine
to understand the ethics of randomized controlled trials and facilitate informed consent. Our work shows
that eliciting preferences is not incompatible with randomization, and that preferences carry information
that facilitates inference from treatment effects. For more on preference trials, see Zelen (1979); Flood et
al. (1996); Silverman and Altman (1996); King et al. (2005); Jadad and Enkin (2007); Tilbrook (2008).
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information similar to that produced by selective blind trials.

This paper contributes primarily to the literature on treatment effects. Most of
this literature, based on a statistical framework quite different from our principal-
agent approach, has focused on much simpler effort decisions and the ex post anal-
ysis of data. Agents are usually viewed as either taking treatment or not (with
some exceptions: see Jin and Rubin, 2008, for a recent example), and more im-
portantly, this decision is assumed to be observable, or sufficiently correlated with
exogenous observable variables (Imbens and Angrist, 1994; Angrist et al., 1996;
Heckman and Vytlacil, 2005). In contrast, we consider effort decisions which are
unobservable and high dimensional. Additionally, most previous approaches, even
those that rely—as we do—on decision theory, focus on modeling data from an
RCT after it has been run (Philipson and Desimone, 1997; Philipson and Hedges,
1998).6 We take an ex ante perspective and propose designs for experimental
trials that can help understand how beliefs and effort affect treatment effects.

Successful implementation of the trial designs suggested by our principal-agent
approach requires addressing a number of challenges. A practical limitation of our
approach is that large samples may be needed to estimate all identifiable param-
eters. This limitation is inherent in any non-parametric estimation of treatment
effects conditional on a large set of explanatory variables (see, for example, Pagan
and Ullah, 1999). Another challenge is how to extract reliable preference data
from agents. Mechanisms that are equivalent in theory, due to the assumption of
rationality, may have very different properties in practice. Thus, experimenters
may prefer to elicit coarser preference information in order to use simpler designs.
We believe that these practical concerns are best resolved through a mix of lab-
oratory and field experiments in well-understood environments. Therefore, it is
encouraging that many elements of selective trials are already being evaluated in
field settings (see, for example, Karlan and Zinman, 2009; Ashraf et al., 2010;
Cohen and Dupas, 2010; Berry et al., 2011). A final set of challenges are more
theoretical, and deal with extending our mechanisms to elicit richer information,
such as the variation of preferences over time, or beliefs about other participants.

The paper is organized as follows. Section I uses a simple example to illustrate
the main points of the paper. Section II defines the general framework. Section
III investigates open selective trials. Section IV turns to blind selective trials,
and shows how they can be used to identify true and perceived returns to effort.
Section V analyzes incentivized trials, which eschew placebos, and shows that
under reasonable assumptions they can be as informative as blind selective trials.
Section VI concludes with a discussion of the limitations of, and future directions
for, our approach to designing randomized controlled experiments.

6These studies use information correlated with agents’ decisions to comply or not comply with their
assigned treatments to refine understanding of treatment effects. This approach, as well as ours, is closely
related to the classic Roy (1951) selection model in which selection into treatment reveals information
about an agent’s type (Heckman and Honoré, 1990; Heckman et al., 1997).
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I. An Example

To illustrate the basic insights underlying selective trials, and the potential
usefulness of the data they generate, this section adopts a particularly simple
model of the relationships between agents’ beliefs, effort decisions, and outcomes.
We emphasize that this structure makes inference particularly stark. Subsequent
sections study inference in a much more general model that incorporates many
important aspects of actual experiments.

To fix ideas, we discuss the example in terms of an experiment evaluating the
health effects of a water treatment product.7

A. A Simple Model

There are infinitely many agents indexed by i ∈ N. Each agent has a treatment
status τ i ∈ {0, 1}. If τ i = 1 agent i is in the treatment group, and is given the
water treatment product. Otherwise, τ i = 0, and the agent is in the control
group.

Agent i obtains a final outcome yi ∈ {0, 1} that can be measured by the prin-
cipal. In our example yi = 1 indicates that the agent has remained healthy. The
probability that an agent remains healthy depends on both treatment and effort

Prob(yi = 1|ei, τ i) = q0 +Reiτ i,

where ei ∈ [0, 1] is agent i’s decision of whether or not to expend effort using the
product, R ∈ [RL, RH ] is the technology’s return, which is common to all agents,
and q0 is the unknown baseline likelihood of staying healthy over the study period,
which will be controlled for using randomization. Agents have different types t
that characterize their beliefs about returns R. We denote by Rt = EtR the
returns expected by an agent of type t. The distribution FRt of expectations Rt
in the population need not be known to the principal or the agents.8

We assume throughout that effort is private and cannot be monitored by the
principal. In other words, we assume that all observable dimensions of effort are
already controlled for, and focus on those dimensions that are not observable.
For example, with a water treatment product, an experimenter may be able to

7It should be noted that while our main focus is on the use of RCTs in medical, public health, and
development contexts, our analysis applies to most environments involving decentralized experimentation.
For instance, if a firm wants to try a new way to organize production, specific plant managers will have
to decide how much effort to expend implementing it. The firm’s CEO is in the same position as the
principal in our framework, and must guess the effort expended by his managers when evaluating returns
to the new production scheme. Similarly, if a school board wants to experiment with a new program,
individual teachers and administrators will have to decide how much effort to expend on implementing
the program.

8For illustrative purposes, this example focuses on heterogenous beliefs as a source of heterogenous
behavior and returns. In this setting, convincingly identifying true returns to treatment has a large
effect on behavior, and would be particularly valuable. Moreover, the example allows effort to affect
outcomes only in the treatment group. The general framework, described in Section II, allows for:
general, idiosyncratic, returns; effort in both the treatment and control group; and effort along an
arbitrary number of dimensions, which can accommodate dynamic effort expenditure.
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determine whether or not the agent has treated water in his home, but it may
be much more difficult to determine if the agent drinks treated water when away
from home.9

Given effort ei, agent i’s expected utility is given by

Et[yi|ei]− cei,

where c ∈ (RL, RH) is the agents’ cost of effort. In our example, this may be
the cost of remembering to use the product, the social cost of refusing untreated
water, or disliking the taste of treated water. In addition, we assume each agent
has quasilinear preferences with respect to money. An agent’s willingness to pay
for treatment is Vt = max{Rt − c, 0}, which we assume is less than some value
Vmax for all agents.

We focus initially on open trials, in which agents know their treatment status,
and contrast two ways of running trials: a standard RCT, where agents are ran-
domly assigned to the treatment group with probability π, and a selective open
trial that allows agents to express preferences for treatment by selecting their
probability of treatment.

The implementation of selective trials we explore here uses the BDM mecha-
nism, and proceeds as follows:

1) Each agent sends a message mi ∈ [0, Vmax] indicating his willingness to pay
for treatment;

2) A price pi to obtain treatment is independently drawn for each agent from
a distribution with convex support and c.d.f. Fp that satisfies 0 < Fp(0) <
Fp(Vmax) < 1; and

3) If mi ≥ pi, the agent obtains the treatment at price p, otherwise, the agent
is in the control group and no transfers are made.

Note that a higher message m increases an agent’s probability of treatment,
Fp(m), as well as his expected payment:

∫
p≤m pdFp. As Fp has convex support,

it is dominant for an agent of type t to send message m = Vt.

B. The Limits of RCTs and the Value of Self-Selection

Inference from Randomized Controlled Trials

We begin by considering the information produced by an RCT. If agent i is in
the treatment group, he chooses to expend effort e = 1 if and only if Rt ≥ c.

9Still, as Duflo et al. (2010) shows, innovative monitoring technologies may be quite effective. To the
extent that monitoring is feasible, it should be done.
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Hence, the average treatment effect identified by an RCT is

∆RCT = E[y|τ = 1]− E[y|τ = 0]
= E[q0 +R× 1Rt≥c|τ = 1]− E[q0|τ = 0]
= R× Prob (Rt > c) = R× (1− FRt(c)).

When the distribution of agents’ expectations FRt is known, then an RCT will
identify R. However, in most cases FRt is not known, and the average treatment
effect ∆RCT provides a garbled signal of the underlying returns R. If the outcomes
in the treatment group are only weakly better than those in the control group,
the principal does not know if this is because the water treatment product is not
particularly useful, or because the agents did not expend sufficient effort using it.

Inference from Open Selective Trials

We now turn to selective trials and show they are more informative than RCTs.

The selective trial described above elicits agents’ willingness to pay and, con-
ditional on a given willingness to pay V , generates non-empty treatment and
control groups. As it is dominant for agents to truthfully reveal their value, an
agent with value Vt has probability Fp(Vt) of being in the treatment group and
probability 1− Fp(Vt) of being in the control group. Both of these quantities are
strictly positive as 0 < Fp(0) < Fp(Vmax) < 1.10

This trial provides us with the set of local instruments needed by Heckman and
Vytlacil (2005) to estimate marginal treatment effects (MTEs). That is, for any
willingness to pay V , we are able to estimate

∆MTE(V ) ≡ E[y|τ = 1, Vt = V ]− E[y|τ = 0, Vt = V ]
= E[y|τ = 1,mt = V ]− E[y|τ = 0,mt = V ],

which can be used to perform policy simulations in which the distribution of
types is constant but access to the technology is changed, for example, by subsi-
dies. Moreover, MTEs can be integrated to recover the average treatment effect
identified by an RCT.

In the current environment, willingness to pay is a good signal of future use,
and thus MTEs can be used to identify the true returns R. Specifically, all agents
with value Vt > 0 have expectations Rt such that Rt − c > 0, and expend effort

10Note also that agents with higher value are treated with higher probability. This matters for the
precision of estimates in actual experiments, where sample size is not infinite. We return to this point
in Section III.
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e = 1 using the technology.11 Hence, it follows that

∆MTE(V > 0) = E [q0 +R× et |τ = 1, Vt > 0]− E[q0|τ = 0, Vt > 0]
= R.

A selective trial identifies the average treatment effect, MTEs, and true returns
R. Hence, it is more informative than an RCT, which only identifies the average
treatment effect.

The true returns R, and the distribution of valuations Vt, have several policy
uses. First, knowing R allows us to simulate the treatment effect for a popula-
tion in which all agents expend the appropriate amount of effort. Second, these
variables allow us to estimate the returns to increasing usage within a given pop-
ulation. Third, and finally, the data provided by a selective trial can be used
to inform agents and disrupt learning traps more effectively than data from an
RCT. For example, imagine that true returns to the technology are high, but most
agents believe they are low. In that case, an RCT will measure low returns to
the treatment and will not convince agents that they should be expending more
effort. In contrast, the data generated by a selective trial would identify that
true returns are high, and lead agents to efficiently adopt the water treatment
product.12

C. Richer Treatments

In the previous subsection, a selective trial identified true returns because will-
ingness to pay was a good predictor of usage. However, as our continuing example
shows, this will not always be the case. Thus, MTEs are generally not sufficient
to infer true returns, nor whether beliefs are affecting measured treatment ef-
fects. However, more sophisticated selective trials, such as blind selective trials
or incentivized selective trials, can be used to recover true returns.

We modify the example so that the returns R to the technology include both
baseline returns and returns to effort: R = (Rb, Re) ∈ R2. In the context of a
water treatment product, Rb could be the baseline returns to using the product
only when it is convenient to do so, and Re the additional returns to using it more
thoroughly (for example, bringing treated water when away from home). Success

11In this environment, the same result can be obtained by charging a price p for a probability of
treatment π such that FRt

` p
π
− c

´
> 0, and evaluating treatment effects only for those willing to pay.

The idea that higher prices will select individuals who value the technology more, and use it more
intensely, can be traced back to the seminal selection model of Roy (1951). See Oster (1995) for a
discussion of related ideas in the context of non-profit organizations.

12For empirical work in development economics on the effect of information on behavior, see Thornton
(2008), Nguyen (2009) or Dupas (2011). For theoretical work on failures of social learning, see the classic
models of Banerjee (1992) or Bikhchandani et al. (1992).
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rates given effort and treatment status are:

Prob(y = 1|τ = 0, e) = q0

Prob(y = 1|τ = 1, e) = q0 +Rb + eRe.

An agent of type t has expectation (Rb,t, Re,t) about returns R = (Rb, Re), and
expends effort if and only if Re,t ≥ c. Therefore, an agent’s willingness to pay for
treatment is given by Vt = Rb,t + max {Re,t − c, 0}.

Inference from Open Selective Trials

We have already shown that open selective trials can identify treatment effects
conditional on willingness to pay. However, in the current environment, will-
ingness to pay is no longer a good signal of effort. Indeed, there are now two
reasons why an agent might value treatment: he believes that a thorough use of
the product has high returns (Re,t is high)—the channel emphasized in Section
I.B—or he believes that a casual use of the water treatment product is sufficient
to obtain high returns and that thorough use brings little additional return (Rb,t
is high, but Re,t is low). That is, agents who are willing to pay because they think
baseline returns are high need not be the agents who will actually expend effort.
Formally, a selective trial still identifies MTEs,

∆MTE(V ) = Rb +ReProb(Re,t ≥ c|Rb,t + max{Re,t − c, 0} = V ),

but these are generally not sufficient to recover Rb and Re.13 As a result, MTEs
are insufficient to simulate the returns in a population of agents that all expended
appropriate effort, or more generally, the returns from increasing the effort of
agents. Nor do MTEs provide the information needed to infer true returns.

Blind Selective Trials

In a blind trial, an agent does not know his treatment status τ ∈ {0, 1} at the
time of effort, but rather, knows his probability φ ∈ [0, 1] of having been assigned
to the treatment group. Open trials are blind trials where φ is either 0 or 1.

Given a probability φ of being treated, an agent expends effort if and only if
φRe,t − c > 0. An agent’s expected value for being treated with probability φ is

Vt(φ) = φRb,t + max{φRe,t − c, 0}.

We depart from standard blind trials in a simple but fundamental way: while
they keep φ fixed and do not infer anything from the specific value of φ used, we

13For instance, it is not possible to distinguish a situation in which returns to effort are equal to Re
and a proportion ηV of agents with value V expends effort, from a situation in which returns to effort
are 2Re and a proportion η

2
V of agents with value V expends effort.
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allow φ to vary and use both willingness to pay for, and outcomes at, different
values of φ for inference.14

As with open trials, willingness to pay can be elicited using a BDM-type mecha-
nism. Since willingness to pay Vt(φ) now depends on φ, the mechanism in Section
I.A is implemented after the agent is asked to send a message m(φ) for each pos-
sible value of φ. A value of φi is then drawn independently for each agent from
a c.d.f. Fφ, with full support on [0, 1] and mass points at 0 and 1. Transfer pi is
independently drawn from a c.d.f. Fp, as before. If m(φi) ≥ pi, the agent pays pi
and is allotted the treatment with probability φi ; otherwise, the agent is in the
control group and no transfers are made.

A first advantage of blind trials is that, unlike open trials, an agent’s actual
treatment status τ and his belief φ about his treatment status can be different.
This allows for a robust identification of baseline returns Rb. If an agent is
assigned a probability of treatment 0 < φ < 1 low enough that φRH < c, he will
not expend any effort. Still, a proportion φ > 0 of such agents receive treatment
while a proportion 1−φ > 0 do not. Hence, we can identify Rb by measuring the
effect of treatment for agents known not to expend effort:

Rb = E
[
y
∣∣∣φ < c

RH
, τ = 1

]
− E

[
y
∣∣∣φ < c

RH
, τ = 0

]
.

A second advantage of blind trials is that the agents’ value mapping Vt(φ)
allows identification of which agents would expend effort when treated for sure.
The amount that an agent with belief φ = 1/2 is willing to pay to learn his
treatment status is

θt ≡
1
2

[Vt(φ=1) + Vt(φ=0)]− Vt(φ=1/2).

If the agent does not intend to expend effort when treated for sure, he will not
value information, and θt will be equal to 0. Inversely, if the agent does intend to
expend effort, information is valuable since it allows him to tailor his behavior to
his treatment status, and thus θt > 0.15 In the current example, provided that a
positive measure of agents satisfies θt > 0, we can identify Re using either of the

14A similar insight comes from Malani (2006), which identifies placebo effects by examining variation
in outcomes associated with variations in the probability of treatment across blinded experiments.

15This result holds very generally—see Proposition 5. To verify this relationship in the current ex-
ample, note that if the agent expends effort conditional on being treated for sure (that is, Re,t > c),
then

θt =
1

2
[Rb,t +Re,t − c]−

1

2
Rb,t −max


1

2
Re,t − c, 0

ff
≥ min


Re,t − c

2
,
c

2

ff
> 0.
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following expressions:

Re = E[y|φ=1, θt>0, τ=1]− E[y|φ=1, θt=0, τ=1]

= E[y|φ=1, θt>0, τ=1]− E
[
y
∣∣∣φ< c

RH
, θt>0, τ=1

]
.

Incentivized Selective Trials

We now show that incentivized selective trials can provide the principal with
information similar to that produced by blind selective trials. This is useful as in
many areas of economic interest, blind trials are not practical due to the lack of
suitable, or ethical, placebos.

In an incentivized selective trial, an agent obtains a treatment status τ ∈ {0, 1},
makes a fixed transfer p (which can be positive or negative), and is given a bonus
(or penalty) w in the event that y = 1. Note that if p > 0 and w > 0, then an
agent is assigned an incentive contract. If, instead, p < 0 and w < 0, an agent is
assigned an insurance contract.

Given a bonus level w, an agent expends effort if and only if (1+w)Re,t−c > 0.
In turn, an agent’s willingness to pay for treatment, given bonus w, is

Vt(w) = (1 + w)Rb,t + max{(1 + w)Re,t − c, 0}.

As before, the mapping w 7→ Vt(w) can be elicited using a variant of the BDM
mechanism (described in Appendix B). Incentivized trials allow us to evaluate
baseline returns in a straightforward manner. When offered a full insurance con-
tract w0 = −1, an agent will expend effort e = 0 so that

Rb = E[y|w=w0, τ=1]− E[y|w=w0, τ=0].

In turn, notice that for any type t with Re,t > 0, there exists a value wt such that
whenever w > wt, the agent expends effort e = 1. The value wt is identified from
the mapping w 7→ Vt(w) as

∂Vt
∂w

∣∣∣∣
w>wt

= Re,t +Rb,t > Rb,t =
∂Vt
∂w

∣∣∣∣
w<wt

.

Additionally, this last expression allows us to identify the agent’s subjective beliefs
about baseline returns and returns to effort (Rb,t, Re,t). For a value w sufficiently
high that it induces some agents to expend effort, returns to effort can be identified
by either of the following expressions

Re = E[y|w=w,w − wt>0, τ=1]− E[y|w=w,w − wt<0, τ=1]
= E[y|w=w,w − wt>0, τ=1]− E[y|w=w0, w − wt>0, τ=1].

Thus, just like blind selective trials, incentivized selective trials identify true re-
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turns R = (Rb, Re).

Altogether, this section suggests that while unobserved effort is an issue for the
external validity of standard randomized controlled trials, appropriate ex ante
trial design—rather than ex post data treatment—may help in alleviating these
concerns.

The rest of the paper explores how these results extend in a general framework
that allows for many realistic elements. In particular, this general framework
allows for arbitrary heterogeneity among agents, including heterogeneous prefer-
ences, beliefs, and returns. Moreover, the general framework allows for multidi-
mensional effort in both the treatment and control group. This allows the model
to accommodate complex technologies, dynamic effort expenditure, and attempts
by agents in the control group to obtain substitute treatments.

The following sections provide systematic results about which mechanisms are
the most informative, what sampling patterns they produce, and what can be
inferred from the data they generate.

II. A General Framework

We now generalize the framework used in our example. Once again, there are
infinitely many agents, indexed by i ∈ N. However, returns to the technology are
now described by a multidimensional parameter R ∈ R ⊂ Rκ.

Types

Each agent i has a type t ∈ T , which includes a belief about returns R, as well as
other factors that might affect behavior and outcomes, such as idiosyncratic costs
of effort, idiosyncratic returns, and beliefs about such factors. We assume that
agents are exchangeable, so that their types are i.i.d. draws from some distribution
χ ∈ ∆(T ), which is itself a random variable. A profile of types is given by t ∈ T N.
For conciseness we omit publicly observable traits, but it is straightforward to
allow for them.

Outcomes and Success Rates

Agent i obtains an outcome yi ∈ {0, 1}.16 An agent’s true and perceived likeli-
hoods of success (that is, Prob(y = 1)) depend on his type, the aggregate returns
to the technology and the agent’s effort choice e ∈ E, where E is a compact subset
of Rκ′ .

Success rates are denoted by

q(R, t, τ i, ei) = Prob(y=1|R, t, τ i, ei)

qt(τ i, ei) =
∫
R
q(R, t, τ i, ei)dt(R)

16As Appendix A shows, binary outcomes simplify notation, but are not essential to our results.
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where q(R, t, τ , e) is the true success rate of an agent of type t, which allows for
idiosyncratic, heterogeneous returns, while qt(τ , e) is the probability of success
perceived by an agent of type t, which allows for idiosyncratic, heterogeneous
beliefs about those returns. We assume that q and qt are continuous with respect
to effort e. Note that as e can be multidimensional, the model is consistent
with dynamic effort expenditure, and agents learning about returns to treatment,
or their treatment status (as in Philipson and Desimone, 1997; or Chan and
Hamilton, 2006).17

Preferences

Given effort ei, treatment status τ i, monetary transfer pi, and final outcome yi,
agent i’s utility is u(yi, ti)− c(ei, ti)− pi.

Note that pi can be negative and all transfers can be shifted by a fixed amount,
for example, when there is compensation for participating in the experiment.
Such compensation may be used to increase participation, or relax agents’ cash
constraints.18

Assignment Mechanisms

We distinguish three ways of assigning treatment:

1) Open selective trials are mechanisms Go = (Mo, µo) where Mo is a set
of messages and µo : Mo → ∆({0, 1} × R) maps individual messages to
a probability distribution over treatment status τ i ∈ {0, 1} and transfers
pi ∈ R;

2) Blind selective trials are mechanisms Gb = (Mb, µb) where Mb is a set of
messages and µb : Mb → ∆([0, 1] × R) maps messages to a probability dis-
tribution over uncertain treatment status φi = Prob(τ i = 1) and transfers
pi; and

3) Incentivized selective trials are mechanisms Gw = (Mw, µw) where Mw is
a set of messages and µw : Mw → ∆({0, 1} × R × R) maps messages to a
probability distribution over treatment status τ i, a fixed transfer pi from
the agent to the principal, and a bonus wi transferred from the principal to
the agent conditional on yi = 1.

17 For example, it is not enough for agents to just expend effort spreading fertilizer. As Duflo et al.
(2008a) highlights, effort is needed to choose the appropriate seeds to go with the fertilizer, to learn how
much and when to water the crops, and to learn how much fertilizer gives the highest returns at the
lowest cost. In this case, it is natural to think of effort as a vector, where the first component corresponds
to choosing the amount of fertilizer, the second to picking the right seeds, the third to properly applying
it, and so on.

To accommodate dynamic effort expenditure, different dimensions of the effort vector may indicate
contingent effort expenditure depending on realized observables, such as the state of crops, or how they
seem to respond to previous fertilizer use.

18Appendix A allows for agents with non-quasilinear preferences and thus tradeoffs between treatment
and non-monetary costs.
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Note that these are single agent mechanisms. Agent i’s final assignment depends
only on his message, and not on messages sent by others. We denote the likelihood
of being given the treatment when sending message m by π(m) ≡ Prob(τ=1|m).
We focus largely on mechanisms G such that χ-almost surely every agent i has a
dominant message mG(ti). In all these designs, agents can probabilistically select
their assignment using messages, hence the name selective trials.

Informativeness of Mechanisms

We evaluate mechanisms according to their informativeness in the sense of
Blackwell. We say a mechanism G is at least as informative as a mechanism G′,
denoted by G′ � G, if the data generated by G′ can be simulated using only data
generated by G.

Specifically, denote by ai the assignment given to agent i by whichever mecha-
nism is chosen. The principal observes data dG = (mi, ai, yi)i∈N. Denote by DG
the set of possible data sequences generated by mechanism G. Mechanism G′ � G
if and only if there exists a fixed data manipulation procedure h : DG → ∆(DG′)
such that for all t ∈ T N, R ∈ R, h(dG(t, R)) ∼ dG′(t, R).

This notion of informativeness is easier to work with in environments with
infinite samples, as this focuses on issues of identification rather than issues of
statistical power. However, this definition also applies in the case of finitely many
agents.19

Although our framework is quite general, we intentionally limit our approach in
three ways. First, we assume agents are rational, that is, they play undominated
strategies, regardless of the complexity of the assignment mechanism. Second,
we examine only single-agent mechanisms. Third, despite the fact that effort
expenditure may be dynamic, we restrict attention to mechanisms that elicit
preferences only once. Note, however, that the timing of this elicitation may
be freely chosen by the principal. Specifically, messages could be elicited before
agents have any exposure to the technology, or after they have assessed it. Section
VI discusses the limitations of assuming rationality and examining only single-
agent mechanisms, and the difficulties of eliciting preferences more than once.

III. Open Selective Trials

In open selective trials an agent is assigned a treatment status τ and a transfer
p based on message m. Given this assignment (τ , p), the indirect utility of an
agent with type t is Vt(τ)− p where,

Vt(τ) = max
e∈E

qt(τ , e)u(y=1, t) + [1− qt(τ , e)]u(y=0, t)− c(e, t).

19With infinite samples, sampling patterns do not matter. Thus, there is a large equivalence class of
most informative mechanisms. When samples are finite, these mechanisms remain undominated in the
sense of Blackwell, but need no longer be equivalent.
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We normalize the value of being in the control group Vt(τ = 0) to zero for every
type. Hence Vt ≡ Vt(τ = 1) denotes the agent’s willingness to pay for treatment.
For simplicity, we assume that there exists a known value Vmax ∈ R > 0 such that
for all t ∈ T , Vt ∈ (−Vmax, Vmax), and that the distribution over values induced
by the distribution of types χ admits a density. The optimal effort for type t
given treatment status τ is denoted by e∗(τ , t).20

A. Information Production in Open Selective Trials

Our first result highlights the fact that selective trials are natural extensions
of RCTs. An RCT is a mechanism G0 = (∅, π0). As M = ∅, no messages are
sent, all agents are assigned to the treatment group with the same probability
π0 ∈ (0, 1), and there are no transfers.

FACT 1 (full support sampling): Consider a mechanism G = (M,µ). If there
exists ξ > 0 such that for all m ∈ M , π(m) ∈ (ξ, 1 − ξ), then, with infinite
samples, G0 � G.

PROOF:
All proofs can be found in the online appendix.
Recalling that π(m) ≡ Prob(τ = 1|m), Fact 1 shows that if every type has a

positive probability of being in the treatment or control group, then mechanism
G is as informative as an RCT. This holds for any ξ > 0 because the sample size
is infinite. The assumption of infinite samples—which is maintained throughout
the paper—is important for all of our identification results. We discuss sampling
issues that arise with finite samples in Section III.B.

As Plott and Zeiler (2005) and others show, information elicited in non-incentive-
compatible ways can be unreliable. Moreover, as Kremer and Miguel (2007)
and others note, reported beliefs about a technology’s return are often uncor-
related with use. Therefore, we focus on strictly incentive-compatible assign-
ment mechanisms—assignment mechanisms such that χ-almost every agent has
a strictly preferred message.21

Our next result shows that an open selective trial is a most informative trial if
and only if it identifies each agent’s value Vt, and, conditional on any expressed
valuation, assigns a positive mass of agents to both the treatment and control
group.

PROPOSITION 1 (most informative mechanisms): Any strictly incentive-compatible
mechanism G identifies at most value Vt (that is, Vt = Vt′ ⇒ mG(t) = mG(t′)).

20At this stage, whether optimal effort is unique or not does not matter. We explicitly assume a
unique optimal effort level in Sections IV and V to apply a convenient version of the Envelope Theorem.

21Note that the mechanisms we consider can accommodate surveys. Consider the mechanism G =
(T , π0) where the message space M = T , the likelihood of treatment is constant and equal to π0, and no
transfers are made. This is essentially an RCT supplemented with a rich survey. As assignment does not
depend on the message, truthful revelation of one’s type is weakly dominant. Unfortunately, any other
message is also weakly dominant. Hence, data generated by such a mechanism is likely to be unreliable,
especially if figuring out one’s preferences is costly.
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Whenever G identifies values Vt (that is, mG(t) = mG(t′) ⇒ Vt = Vt′) and
satisfies full support (0 < infm π(m) and supm π(m) < 1), then for any strictly
incentive-compatible mechanism G′, G′ � G.

It follows that open selective trials can identify at most the distribution of re-
turns conditional on agents’ valuations, which can be used to construct marginal
treatment effects (MTEs). It is important to note that these mechanisms iden-
tify MTEs independently of the experimenter’s beliefs. Hence, to the extent
that elicited values are reliable, these mechanisms identify MTEs with a degree
of robustness comparable to that with which RCTs identify average treatment
effects.22

Implementing Most Informative Trials

Here we exhibit two straightforward implementations of most informative se-
lective trials. The first is the BDM mechanism described in Section I.A, with the
expanded message space M = [−Vmax, Vmax]. Once again, the principal draws a
price pi ∈ [−Vmax, Vmax] independently for each agent from a common c.d.f. Fp
with support [−Vmax, Vmax]. If mi ≥ pi, then the agent is assigned (τ = 1, pi);
otherwise, he is assigned (τ=0, 0).

FACT 2 (BDM Implementation): Whenever Fp has full support over [−Vmax, Vmax],
an agent with value Vt sends optimal message mBDM = Vt and the BDM mecha-
nism is a most informative mechanism.

A second implementation is a menu of lotteries. Consider mechanism G∗, where
M =

(
−1

2 ,
1
2

)
, any agent sending message m is assigned to the treatment group

with probability π(m) = 1
2 +m, and must make a transfer p(m) = Vmaxm

2. One
can think of agents as having a baseline probability of being in the treatment
group equal to 1

2 and deciding by how much they want to deviate from this
baseline. An agent with value Vt chooses message m to maximize

π(m)Vt − p(m) = Vt

(
1
2

+m

)
− Vmaxm

2.

This problem is concave in m, and first order conditions yield an optimal message
Vt/2Vmax, which identifies Vt. In addition, every agent is assigned to the treat-
ment and control group with positive probability. Thus G∗ is a most informative
mechanism.

Note that G∗ gives agents higher expected utility than an RCT that assigns
agents to the treatment and control group with probability 1

2 . More generally, for
any RCT, a selective trial that assigns price p = 0 for a probability of treatment
π equal to that of the RCT must increase the agents’ expected utility. Thus,

22Note that selective trials also identify higher order moments of the outcome distribution conditional
on treatment status and willingness to pay, which may be useful to researchers.
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selective trials may help decrease the number of agents who refuse randomization.
This is potentially useful as refusals reduce the external validity of treatment
effects (Malani, 2008).23

B. The Cost of Running Selective Trials

In equilibrium, the menu of lotteriesG∗ yields sampling profile π(V ) = 1
2

(
1 + V

Vmax

)
,

which is strictly increasing in value V . In the BDM mechanism, the sampling
profile πBDM (V ) = Fp(V ) is also increasing in V . This property holds for any
mechanism.

PROPOSITION 2 (monotonicity): Consider a strictly incentive compatible mech-
anism G. If agents t and t′ with values Vt > Vt′ send messages mG(t) 6= mG(t′),
then it must be that π(mG(t)) > π(mG(t′)).

Thus, in any selective trial, agents with high values are over-sampled—they have
a higher likelihood of being in the treatment group—and those with low values are
under-sampled. In contrast, RCTs have a flat sampling profile. While sampling
patterns do not matter when there is an arbitrarily large number of agents, they
can significantly affect statistical power when samples are finite.

This issue is related to the recent debate in development economics about charg-
ing for treatment in RCTs.24 If, as in Ashraf et al. (2010), willingness to pay is
correlated with product usage, then eliciting willingness to pay might be quite
useful in understanding true returns. If, instead, as in Cohen and Dupas (2010),
most agents have low values, and willingness to pay is a poor predictor of actual
use, then undersampling agents with low values may significantly reduce statis-
tical power. Furthermore, in such a setting, willingness to pay provides little
information about intended use.25

We make two contributions to this debate. First, we note that when trade-
offs between money and treatment are uninformative, selective trials can and
should be based on more informative trade-offs. For instance, if most of the
heterogeneity in willingness to pay is driven by wealth and credit constraints,
then eliciting willingness to wait, or willingness to perform a tedious task—like
sitting through multiple information sessions—may be a better indicator of future
usage than willingness to pay. As we discuss in Section VI, this requires some
knowledge of the agents and their environment.

Second, we show that carefully designed selective trials can reduce the costs
of oversampling agents with high values by reducing the slope of the sampling
profile.

23Jadad and Enkin (2007) reports refusal rates approaching 50 percent in some medical trials.
24This literature is motivated by questions of efficiency, and is mostly interested in whether charging

for usage improves how well treatment is matched with those who need and use it. This paper takes a
slightly different perspective, and is interested in how controlling for willingness to pay improves inference
from experimental trials.

25As Dupas (2010) shows, this can also hinder social learning.
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PROPOSITION 3 (sampling rates and incentives): For any mechanism G = (M,µ)
and ρ < ρ in (0, 1), there exists a mechanism G′ = (M,µ′) such that G � G′, and
for all m ∈M , π′(m) ∈ [ρ, ρ].

The following must also hold. Denoting the expected utility of type t sending
message m in mechanism G′ (including transfers) by U(t|m,G′), then

max
m1,m2∈M

|U(t|m1, G
′)− U(t|m2, G

′)| ≤ 2(ρ− ρ)Vmax.

Proposition 3 implies that it is always possible to reduce the slope of a mecha-
nism’s sampling profile without affecting identification. Unfortunately, reducing
the slope of the sampling profile also reduces incentives for truth-telling. We
illustrate this with the family of mechanisms (G∗λ)λ∈(0,1) which generalize G∗ as
follows: M =

(
−1

2 ,
1
2

)
, π(m) = 1

2 + λm and p(m) = λVmaxm
2. As the slope of

the sampling profile λ goes to zero, each agent will be sampled with probabil-
ity approaching 1

2 and will pay an amount approaching zero, irrespective of the
message he sends. For any λ > 0, m = Vt/2Vmax is still a dominant strategy
for an agent of type t. However, if an agent with value Vt instead sends message
V/2Vmax with V 6= Vt, his expected loss is

U(t|m = Vt/2Vmax)− U(t|m = V/2Vmax) =
λ

4Vmax
(Vt − V )2,

which vanishes as the slope of the sampling profile λ goes to 0.
Importantly, although there is a trade-off between oversampling agents with

high values and the noisiness of the preference information that may be elicited,
the slope of the sampling profile is a free parameter over which the principal can,
and should, optimize.

Altogether, this section has shown that open selective trials provide a simple
way to identify MTEs and, more generally, the distribution of returns conditional
on willingness to pay. In addition, while selective trials systematically oversample
high value agents, this issue is negligible when sample size is large or agents
are very responsive to incentives. However, as Section I highlights, willingness
to pay need not be a good predictor of actual effort, and MTEs may not allow
identification of deep parameters of interest. The following sections explore richer
treatments that can better identify the role of effort.

IV. Blind Selective Trials

A. Framework and Basic Results

In blind trials, an agent is assigned a probability of being in the treatment
group, φ ∈ [0, 1], which is disclosed to the agent, and an actual treatment status,
τ ∈ {0, 1}, which is known only to the principal. Thus, the pair (τ , φ) can be
thought of as a full description of an agent’s overall treatment. Blind selective
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trials nest both open selective trials, where φ ∈ {0, 1}, and standard blind trials,
where φ is fixed.

Assignment Mechanisms

As noted in Section II, selective blind trials are mechanisms G = (M,µ) where
µ : M → ∆([0, 1] × R). Given a message m, µ assigns the agent a likelihood
of being treated φ ∈ [0, 1], and a transfer p ∈ R. An actual, and unrevealed,
treatment status τ ∈ {0, 1} is drawn according to φ.

Utility and Effort

An agent of type t’s value for uncertain treatment status φ is:
(1)
Vt(φ) = max

e∈E

(
φqt(τ=1, e)+(1−φ)qt(τ=0, e)

)(
u(y=1, t)−u(y=0, t)

)
+u(y=0, t)−c(e, t).

The corresponding effort decision is e∗(φ, t), which we assume is unique.26 Con-
sistent with earlier notation, we maintain Vt(φ=0) = 0. Note that Vt(φ=1) = Vt
is the agent’s value for treatment in an open trial. Throughout the section, we
keep φ as an argument of Vt(φ) and denote the value of Vt(φ) at ϕ by Vt(φ=ϕ).
Thus, Vt(φ) denotes the entire mapping: ϕ 7→ Vt(φ=ϕ). Denoting by µ(φ|m) the
distribution of assignments φ given message m, we have:

PROPOSITION 4 (most informative mechanisms): Any strictly incentive-compatible
blind mechanism G identifies at most the mapping Vt(φ) (that is, Vt(φ) = Vt′(φ)⇒
mG(t) = mG(t′)).

If G identifies Vt(φ) (that is, mG(t) = mG(t′) ⇒ Vt(φ) = Vt′(φ)) and satisfies
infφ,m µ(φ|m) > 0 then G′ � G for any strictly incentive-compatible mechanism
G′.

A simple generalization of the BDM mechanism is a most informative blind
trial. The blind BDM Mechanism (bBDM) is composed of distributions Fφ over
[0, 1], and Fp|φ over [−Vmax, Vmax] with densities bounded away from 0, and the
message space M = [−Vmax, Vmax][0,1], so that a message m corresponds to a
value function Vt(φ). An agent sends message mi, and the principal draws values
φi = ϕ and pi according to distributions Fφ and Fp|ϕ. If mi(ϕ) ≥ pi, the agent
is assigned (ϕ, pi). Otherwise, the agent is assigned (0, 0). It is straightforward
to show that mbBDM (t) = Vt(φ). Additionally, bBDM satisfies the full sampling
constraint infφ,m µ(φ|m) > 0.

Blind selective trials have two distinct advantages over open selective trials.
First, blind selective trials distinguish an agent’s belief φ and treatment status τ .
As detailed in the next subsection, this allows the principal to identify whether

26Using the results of Milgrom and Segal (2002) this allows us to apply the usual Envelope Theorem
to Vt(φ) in Proposition 6. Note that this also implies that e∗(φ, t) is continuous in φ.



20 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

empirical success rates are being driven by the agent’s behavior or by the treat-
ment itself. Second, by identifying the value function Vt(φ), blind selective trials
provide useful information about an agent’s intended behavior and his perceived
success rate under different conditions.

B. The Value of Distinguishing Beliefs and Treatment Status

Changes in success rates due to treatment come from two sources: the effect of
the treatment itself, and the effect of behavioral changes induced by treatment.
In an open trial, changes in behavior are perfectly correlated with changes in
treatment status. As a result, the effect of treatment, and the effect of behavioral
changes are difficult to distinguish. In contrast, blind trials allow us to disentangle
these two effects by distinguishing an agent’s actual treatment status τ and his
(correct) belief φ that he is being treated.

We can disentangle these effects by considering E[y|Vt(φ), φ= ϕ, τ ], the mea-
sured success rate conditional on the value function Vt(φ), belief φ = ϕ, and
treatment status τ , which is identified by selective blind trials. This allows iden-
tification of MTEs conditioned on the entire value function, ∆MTE(Vt(φ)), as well
as the pure treatment and behavioral effects ∆T (Vt(φ)) and ∆B(Vt(φ)):

∆T (Vt(φ)) = lim
ϕ→0
ϕ>0

E[y|Vt(φ), φ=ϕ, τ=1]− E[y|Vt(φ), φ=ϕ, τ=0]

∆B(Vt(φ)) = lim
ϕ→1
ϕ<1

E[y|Vt(φ), φ=ϕ, τ=0]− E[y|Vt(φ), φ=0, τ=0].

As ϕ approaches zero, an agent’s effort converges to e∗(τ = 0, t), the effort he
would expend if he knew he was not treated.27 Hence, ∆T identifies the returns to
treatment keeping the agent’s behavior at its default level e∗(τ=0, t). Similarly, as
ϕ approaches one, the agent’s effort converges to e∗(τ=1, t), the effort associated
with sure treatment. Thus, ∆B is the effect of behavior change alone. Finally,

∆I ≡ ∆MTE −∆T −∆B

measures the aggregate treatment effect (conditional on value Vt(φ)), net of the
effect of treatment and behavior alone. That is, ∆I measures the interaction
effect between behavior and treatment. If ∆I is positive, then treatment and
effort changes are complementary in producing successful outcomes. If, instead,
∆I is negative, this suggests that there is a negative interaction between treatment
and the perceived optimal effort of agents.28

27We use a continuity argument because φ = 0 implies τ = 0, hence, there is no treatment group.
This is essentially an identification at infinity argument, as in Heckman (1990) or Heckman and Honoré
(1990), which entails well-known practical difficulties.

28These quantities can also be measured unconditionally across the entire agent population, or condi-
tioned only on the value for sure treatment, Vt. Moreover, ∆T can be estimated using a standard blind
RCT with a sufficiently low value of φ.
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Being able to identify ∆T and ∆B has important practical implications. Con-
sider, for example, a cholesterol-reducing drug. If agents react to anticipated
treatment by eating more fatty foods, then the aggregate effect of treatment
could be quite small even if the effect of the drug alone is significant. In this
environment, ∆T is the treatment effect purified of changes in behavior, that is,
the effect of the drug on people who do not change their diet. Moreover, the sum
of the interaction effect and the pure effect of treatment, ∆I + ∆T , is the part of
treatment effect that could not be obtained without treatment.

When interpreting ∆B and ∆I it is important to keep in mind that these
are the direct and interaction effects at the agents’ perceived optimal effort level
e∗(τ = 1, t). Consequently, if ∆I and ∆B are small, this may be because effort
does not improve the success rate of treatment, or because the agent is expend-
ing inappropriate effort. In order to distinguish these two possibilities, we need
additional information on the effort of agents. As the following subsection shows,
this is what Vt(φ) provides.

C. The Value of Eliciting Preferences Vt(φ)

As highlighted in Section I.C, the mapping Vt(φ) can tell us whether, and by
how much, treatment changes an agent’s effort. Recalling that Vt(φ = 0) = 0,
knowledge of the mapping Vt(φ) provides the following simple test.

PROPOSITION 5 (a test of “intention to change behavior”):
If e∗(φ=0, t) = e∗(φ=1, t), then for all ϕ, Vt(φ=ϕ) = ϕVt(φ=1).
If e∗(φ=0, t) 6= e∗(φ=1, t), then for all ϕ ∈ (0, 1), Vt(φ=ϕ) < ϕVt(φ=1).

When effort changes with τ , the agent gets additional surplus from tailoring his
behavior to his treatment status. The difference ϕVt(φ= 1) − Vt(ϕ) is thus the
agent’s willingness to pay to learn his actual treatment status, which will be zero
if effort is independent of treatment.29 Recalling that qt(τ , e) is the perceived
success rate of an agent with type t, the value function Vt(φ) also allows us to
estimate an agent’s perceived returns to effort.

PROPOSITION 6 (identifying perceived returns to effort): For any value ϕ,

∂Vt(φ)
∂φ

∣∣∣∣
ϕ

= [qt(τ=1, e∗(ϕ, t))− qt(τ=0, e∗(ϕ, t))]× [u(y=1, t)− u(y=0, t)].

Note that selective blind trials can allow for double-blind designs in which the principal has varying
beliefs about the likelihood that an agent is being treated. Varying the beliefs of the principal may
help identify the treatment effect due to variations in the principal’s behavior. A proper analysis of this
approach requires a better understanding of the principal’s incentive problem, which we abstract away
from in this paper.

29When ϕ = 1/2 this coincides with test statistic θt defined in Section I.C.
Note that in a richer decision theoretic framework, agents may have preferences for early revelation of

uncertainty, even though their actions do not depend on information (Kreps and Porteus, 1978). In such
a framework, an agent’s value for information would be a noisy (but still informative) signal of intent to
change behavior.
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In particular, we can compute the agent’s perceived increase in treatment effects
when moving from default effort (induced by ϕ = 0) to perceived optimal effort
given treatment (induced by ϕ = 1):

∂Vt(φ)
∂φ

∣∣∣∣
1

/
∂Vt(φ)
∂φ

∣∣∣∣
0

=
qt(τ=1, e∗(ϕ=1, t))− qt(τ=0, e∗(ϕ=1, t))
qt(τ=1, e∗(ϕ=0, t))− qt(τ=0, e∗(ϕ=0, t))

.

This data helps evaluate whether under-provision of effort is to blame for low
returns to treatment.30 Returning to the example in Section I, imagine a trial of a
water treatment product known to the principal to be effective only if agents use
it whenever they drink water. If measured returns to the treatment are low, there
are two competing explanations: 1) the treatment is not effective in the agents’
disease environment, or 2) agents are not expending appropriate effort using the
product. Agents’ perceived returns can help distinguish these explanations. If
perceived returns to effort are high, then the agent is likely to be expending
significant effort, and it is more likely that the treatment is not effective in a
particular disease environment. If, instead, perceived returns are low, it becomes
more likely that the treatment has an effect that is unmeasured due to agents’
lack of effort.

Preference data Vt(φ) may also provide some insight into the nature of placebo
effects. Under a sufficiently broad definition of behavior—including unconscious
or involuntary behavior—behavioral treatment effects ∆B are largely undistin-
guishable from placebo effects (Malani, 2006). However, because indirect prefer-
ences identify whether or not agents intend to change their behavior (Proposition
5), this data provides some indication of whether behavioral effects ∆B are driven
by changes in behavior of which the agent is aware. For instance, if agents do not
value information (Vt(φ = ϕ) = ϕVt(φ = 1)), and yet exhibit positive behavioral
effects (∆B > 0), this suggests that changes in behavior the agent is unaware of
are driving behavioral effects.

V. Incentivized Selective Trials

We now show how quantities similar to those identified by blind selective trials
can be identified without a placebo. This can be accomplished using an incen-
tivized selective trial, which allows agents to express preferences over contracts.31

30Identifying these derivatives requires the precise elicitation of an agent’s preferences. This relies
heavily on the rationality of agents, but not sample size.

Note that the logic underlying Proposition 5 implies Vt(φ) must be convex. This follows from the
fact that any mean preserving spread in belief φ is equivalent to the arrival of a signal about treatment
status. As more information is necessarily useful in this setting, this implies that Vt(φ) is convex. Thus,
in practice, it may be preferable to use simpler mechanisms that elicit Vt(φ) for very few values of φ,
and construct discrete approximations of the desired derivatives. As Vt(φ) is convex in φ, a few points
are sufficient to obtain correct bounds on these derivatives.

31For field experiments using explicit incentives, see, for instance, Gertler (2004); Schultz (2004); Volpp
et al. (2006, 2008); Thornton (2008); and Kremer et al. (2009). A fully worked-out numerical example
illustrating inference from incentivized trials is given in the online appendix.
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A. Framework and Basic Results

Assignment Mechanisms

As noted in Section II, an incentivized trial is a mechanism G = (M,µ), where
µ : M → ∆({0, 1} × R× R). Given a message m, µ is used to draw a treatment
status τ , a fixed transfer p from the agent, as well as a bonus w transferred to
the agent in the event of success. Note that both p and w may be negative in the
case of insurance. The pair (τ , w) can be thought of as an aggregate treatment.

Utility and Effort

The agents’ indirect preferences over contracts (τ , w), denoted by Vt(τ , w), are
given by

(2) Vt(τ , w) = max
e∈E

qt(τ , e)[u(y=1, t) + w] + [1− qt(τ , e)]u(y=0, t)− c(e, t).

We denote by e∗(τ , w, t) the induced effort level, and maintain the normalization
Vt(τ=0, w=0) = 0.

Insurance

A specific value of w that will be useful is w0,t ≡ −[u(y=1, t)− u(y=0, t)], the
utility difference between success (y = 1) and failure (y = 0) for an agent of type
t. The transfer w0,t essentially provides an agent with perfect insurance over the
outcome y. When fully insured, an agent will choose e to minimize the cost of
his effort, regardless of his treatment status. We refer to this effort choice as no
effort. Note that no effort differs from the default behavior of untreated agents in
an open trial, as they may still be expending effort to improve their success rate.

We proceed by assuming that w0,t is known to the principal. At the end of the
section we show that under mild assumptions, w0,t can be inferred from elicited
preferences Vt(τ , w).

B. What can be Inferred from Incentivized Trials?

It is straightforward to extend Propositions 1 and 4, which characterize most
informative mechanisms. That is, G is a most informative incentivized trial if it
identifies the mapping Vt(τ , w) and, given any message, puts positive density on
all possible treatments (τ , w). As before, the BDM mechanism can be adapted
to identify Vt(τ , w)—Appendix B provides a detailed description. Note that the
information produced by incentivized trials nests that produced by open trials.
In particular, Vt(τ=1, w = 0) = Vt.

As in the case of blind selective trials, incentivized selective trials allow us
to disentangle the effects of treatment and effort, as well as infer an agent’s
perception of how effort affects outcomes. Incentivized selective trials recover the
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empirical success rate E[y|Vt(τ , w), τ , w] as a function of preferences, treatment,
and incentives. This will be independent of reward w if effort does not matter for
outcomes, or if incentives do not affect effort expenditure.

Isolating Returns to Treatment and Returns to Effort

A contract with transfer w0,t ≡ −[u(y=1, t)− u(y=0, t)] provides an agent of
type t with perfect insurance. Thus, the agent expends no effort, regardless of
his treatment status. Given w0,t, we can identify two quantities similar to those
discussed in Section IV.B:

Returns to Treatment | No Effort = E[y|Vt(τ , w), τ=1, w=w0,t]
− E[y|Vt(τ , w), τ=0, w=w0,t]

Returns to Effort | Treatment = E[y|Vt(τ , w), τ=1, w=0]
− E[y|Vt(τ , w), τ=1, w=w0,t]

Note that here returns are measured using no effort as a baseline, rather than the
default effort level e∗(τ = 0, w= 0, t) expended by agents in the control group of
an open trial.32

Identifying Perceived Returns to Effort

Indirect preferences over contracts Vt(τ , w) also provide information on per-
ceived returns to effort. Recall that qt(τ , e) denotes the agent’s perceived likeli-
hood of success given treatment status τ and effort e.

PROPOSITION 7 (identifying perceived success rates):

∀τ , w, ∂Vt(τ , w)
∂w

= qt(τ , e∗(τ , w, t)).

Given knowledge of w0,t, this allows us to compute subjective returns to treatment
and perceived optimal effort:

Perceived Returns to Treatment = qt(τ=1, w=w0,t|Vt(τ , w))
− qt(τ=0, w=w0,t|Vt(τ , w))

Perceived Returns to Effort = qt(τ=1, w=0|Vt(τ , w))
− qt(τ=1, w=w0,t|Vt(τ , w)).

Note that if perceived returns to effort are low, this can indicate that an agent
plans to expend little or no effort using the technology. The principal can use
this information in deciding which agents’ usage to monitor more closely.

32Note that, unlike blind selective trials, identification here does not rely on identification at infinity
(see Footnote 27).
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The monetary equivalent of the cost of an agent’s optimal effort can be obtained
by rearranging (2):

c(e∗(τ , w=0, t))− c(e∗(τ , w=w0,t, t)) =
−w0,t × qt(τ , e∗(τ , w=0, t))− [Vt(τ , w=0)− Vt(τ , w=w0,t)].

Note that all parameters on the right-hand side are identified from data, except
perhaps w0,t.

Identifying the costs incurred by agents can improve inference by allowing the
principal to distinguish—among agents who believe that appropriate effort has
high returns—those who believe that only a small amount of effort is sufficient to
obtain high returns from those who believe that a significant amount of effort is
necessary to obtain high returns.

Identifying the Full Insurance Contract

One drawback of incentivized trials is that they rely on identifying the full
insurance contract w0,t, which may depend on the agent’s type. However, w0,t

can be identified from preference information under mild assumptions.

FACT 3: Assume that outcome y = 1 yields strictly greater utility than y = 0,
that is, u(y=1, t) > u(y=0, t), and an agent perceives treatment to be beneficial:

∀e0 ∈ E,∃e1 ∈ E s.t. c(e1, t) ≤ c(e0, t) and qt(τ=0, e0) < qt(τ=1, e1).

Then, w0,t = max{w | Vt(τ=1, w) = Vt(τ=0, w)}.

In words, when treatment facilitates success, the full insurance transfer w0,t is the
highest transfer such that an agent places no value on obtaining treatment. Note
that our assumptions rule out cases where an agent believes treatment reduces the
likelihood of success, as well as environments where an agent values treatment
only for reasons other than its impact on the principal’s outcome of interest.
Whenever the assumptions of Fact 3 do not hold, w0,t must be calibrated from
alternative data, for example, the expected amount of wages lost when sick. This
is a delicate task, and estimates of w0,t are likely to be noisy. The corresponding
insurance contract would not induce no effort, but rather a small, and slightly
uncertain, level of effort. Hence, whenever the full insurance contract w0,t is
estimated with noise, this leads to noisy estimates of treatment effects.

VI. Discussion

This paper studies inference and external validity when experimental subjects
take unobserved decisions that can affect outcomes. As effort expenditure is
driven by beliefs, and beliefs can respond to information, the returns measured
by an RCT may not be representative of the returns a better informed population
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would obtain. We take a principal-agent approach to trial design, where the
principal maximizes the informativeness of data. This leads us to study selective
trials, which improve on RCTs by allowing agents to express preferences over
treatments of varying richness. We show that selective trials can identify whether
agents’ beliefs are reducing measured treatment effects, as well as separate the
returns from treatment, effort, and their interaction.

More generally, this paper advocates a mechanism design approach to ran-
domized controlled experiments, an approach we believe can help build bridges
between reduced form methods—largely concerned with robustness and internal
validity—and structural methods—which use models to identify deep parameters
needed for external validity. While we believe this research agenda can yield many
useful applications, successfully implementing its insights requires overcoming a
number of practical difficulties. In the remainder of this section we discuss some
of these implementation challenges and directions for future work.

A. Implementation Issues

In theory, the selective trials described in this paper are robust and require no
specific knowledge on the part of the principal. However, our results are obtained
under three important sets of assumptions that may not hold in practice.

Behavioral Assumptions

The correct elicitation of preferences, which is key to our analysis, relies strongly
on the assumption that agents are rational. However, as people often fail to
play dominant strategies, BDM-like mechanisms only provide a noisy signal of
the agents’ underlying valuations (Keller et al., 1993; Bohm et al., 1997). This
suggests that running even relatively simple open selective trials, let alone full-
fledged blind or incentivized selective trials, is likely to be challenging.

Agents may also be subject to other behavioral biases that are not taken into
account by our framework.33 A specific concern is that the act of making choices
may change agents’ preferences. For example, it is possible that an agent who
expresses a strong desire for, but does not get, treatment, may attempt to ob-
tain treatment by other means, but would not do so if his valuation was never
elicited.34 Another concern is that agents may try to infer the value of treat-
ment from the principal’s choice of experimental design. For example, similar to
Milgrom and Roberts (1986), if treatment is only available at a high cost, agents
may infer that the technology is more valuable. In these environments, a princi-
pal should take into account how experimental design influences behavior before

33For instance, loss aversion, ambiguity aversion, or even social preferences may play a significant role.
A different bias might come from the psychological cost of parting from any amount money (Cohen and
Dupas, 2010; Ashraf et al., 2010).

34A simple way to test for this is to construct a second control group that is never asked to express
preferences.
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drawing inferences.35

Ultimately, we believe the best way to address these concerns is through careful
and extensive experimentation, blending both laboratory and field work. As lab-
oratory experiments allow the observation of underlying fundamentals, they are
essential to understand which implementations of selective trials produce more
reliable data, and what the relevant biases may be. In turn, field experiments—in
simple environments where actual behavior is observable, and trustworthy sur-
veys may be conducted—are needed to check that the insights gathered from the
laboratory apply in more realistic settings. We anticipate that appropriate im-
plementations should give agents multiple opportunities to learn how the relevant
mechanism works before they actually express preferences over treatment (Plott
and Zeiler, 2005). Additionally, it may be preferable to use mechanisms that elicit
coarse information about preferences, but impose a smaller cognitive burden on
agents.36

Finally, even if our behavioral assumptions are wrong, the data generated still
enriches that obtained through an RCT. Although this invalidates the interpre-
tation of the data put forth in this paper, it does not preclude a more standard
analysis focusing on average treatment effects, or a more sophisticated analysis
taking into account relevant biases.

Sample Size

Large samples are likely to be necessary in order to realize the full value of
the additional data our mechanisms elicit. Note that the difficulty is not with
the data collection process, as the correct elicitation of preferences relies only
on rationality. Rather, sample size restricts the ability to compute meaningful
estimates of treatment effects conditional on preferences. This issue is inherent
to any non-parametric estimation of treatment effects conditional on a rich set
of explanatory variables, and existing methodologies apply (see, for instance,
Pagan and Ullah (1999)). Given sufficiently large samples, a kernel regression
may be practical. In small samples, it may be necessary to bin agents with
similar preferences. Alternatively, it may be informative to estimate parametric
relationships between treatment effects and preference data.37

Cash Constraints

Eliciting preferences using monetary trade-offs is impractical in the presence of
severe cash constraints. When only agents are cash constrained, a possible, but

35For example, the design itself could be considered as part of the experimental treatment. This
implies the principal should compare agents whose preferences are the same, but have been elicited using
different mechanisms.

36In the case of open selective trials, one may elicit the agent’s preferences over only a few lotteries—
see Appendix B for a discussion. In the case of blind selective trials, one may elicit Vt(φ) at a few values
of φ and exploit the fact that Vt(φ) is convex to fit simple functional forms.

37Note that controlling for preferences may reduce the heterogeneity of treatment effects within each
bin. This may alleviate statistical power concerns.



28 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

expensive, solution is to give agents a show-up fee that they can use to express
preferences.

More fundamentally, monetary trade-offs may be uninformative of intended
behavior in environments where there is sizable heterogeneity in the marginal
value of income. For example, Cohen and Dupas (2010) finds that willingness to
pay for bednets in Kenya is a poor predictor of actual use.38 In that setting, other
trade-offs—such as willingness to wait, willingness to perform tedious tasks, or
willingness to return at a later time—may be more informative of agents’ intended
behavior. The choice of the relevant trade-off is an important degree of freedom
that can and should be guided by local knowledge.

In general, it is clear that implementing the ideas advocated in this paper entails
complex experimental designs, and the details of an individual experiment may
need to be fine tuned with careful, context-dependent, pilot projects. However,
we are encouraged by recent field experiments showing that complex designs can
be successfully implemented (see Ashraf et al., 2010; Karlan and Zinman, 2009;
and particularly Berry et al., 2011, which implements a BDM mechanism in the
field). Thus, despite the significant caveats detailed in this section, we are hopeful
that our approach will prove useful in guiding future field work.

B. Theoretical Extensions

Our approach also suggests directions for further theoretical work. We believe
these extensions are sufficiently interesting in their own right to deserve indepen-
dent analyses. We outline two of these extensions, specifying both the challenges
they pose and their potential value added.

Extension to Dynamic Mechanisms

While our framework can accommodate learning and dynamic effort expendi-
ture by agents, we focus on mechanisms that elicit agents’ preferences only once.
This is a significant restriction, as identifying whether, and how, agents change
their behavior over time is an important input in the analysis of treatment ef-
fects (Philipson and Desimone, 1997; Philipson and Hedges, 1998; Scharfstein et
al., 1999; Chan and Hamilton, 2006). However, the timing of elicitation is a free
design variable. In particular, it may occur before or after an agent has been
exposed to the technology.

For concreteness, consider a technology that requires sustained effort to yield
returns, for example, anti-depressants with delayed effects, technologies exhibit-
ing significant learning-by-doing, and so on. Eliciting how preferences change
over time would improve inference by helping to distinguish agents exhibiting
consistent motivation throughout the trial from agents whose motivation drops

38Note that this is not always the case. Ashraf et al. (2010) documents the opposite finding for water
treatment products in Zambia.
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in the middle. The difficulty is that eliciting preferences in the future necessarily
changes an agent’s beliefs about future treatment status, and, in turn, changes
current effort expenditure. In particular, if an agent is promised treatment in fu-
ture periods to induce a particular effort level today, then it becomes impossible
to elicit preferences in the future without breaking this promise.39

Extension to Multi-agent Mechanisms

The mechanisms considered in this paper are all single-agent mechanisms—an
agent’s assignment depends only on the message he sends and not on the messages
sent by other agents. This allows us to identify an agent’s preferences, and thus
his beliefs about his own returns to treatment and to effort. Considering multi-
agent mechanisms, in which assignment depends on the messages sent by others,
can allow us to identify an agent’s beliefs about others agents’ values, others
agents’ success rates, and so on.

The information elicited by multi-agent mechanisms may be useful if there are
externalities between agents, as in Miguel and Kremer (2004), or to investigate
social learning. For example, if we observe that most agents have low value for
the technology, but believe that others have high value for the technology, this
suggests a specific failure of social learning, and provides us with the means to
correct it. Indeed, if most agents do not expend effort using the technology,
but believe others do, then they will interpret each others’ poor outcomes as a
signal that even with high effort the technology does not yield returns. Providing
the agents with actual data on others’ willingness to pay corrects these inference
mistakes and may increase experimentation.
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Extensions

A1. General Outcome Space

Most of the results extend directly to the case where y takes values in a gen-
eral outcome space Y , and is distributed according to some density function
fy(R, τ , e, t). We denote by fy,t(τ , e) ≡

∫
R fy(R, τ , e, t)dt(R) the subjective dis-

tribution of returns from the perspective of an agent of type t. Values go from
being sums of two terms to being integrals, and incentive contracts are now func-
tions w : Y → R. We have that

Vt = max
e∈E

∫
y
u(y, t)fy,t(τ = 1, e)dy − c(e, t)

Vt(φ) = max
e∈E

φ

∫
y
u(y, t)fy,t(τ = 1, e)dy + (1− φ)

∫
y
u(y, t)fy,t(τ = 0, e)dy − c(e, t)

Vt(τ , w) = max
e∈E

∫
y
[u(y, t) + w(y)]fy,t(τ , e)dy − c(e, t).

Propositions 1, 2, 3, 4 and 5 extend directly with these generalized value func-
tions. Propositions 6 and 7, which identify subjective returns to treatment and
effort differ as follows. As we have that

∀y0,
∂Vt(τ , w)
∂w(y0)

= fy,t(τ , e∗(τ , w, t))(y0),

Proposition 7 extends directly.
Proposition 6, which deals with blind trials, is more difficult to extend, as now

we have only a one-dimensional instrument, φ ∈ [0, 1] to identify an entire function
fy,t rather than the single parameter qt. We now identify

(A1)
∂Vt(φ)
∂φ

=
∫
y
u(y, t)[fy,t(τ = 1, e∗(φ, t))(y)− fy,t(τ = 0, e∗(φ, t))(y)]dy,

which corresponds to a utility weighted subjective treatment effect given subjec-
tively appropriate effort under belief φ.

A2. Eliciting Preferences under Non-Quasilinear Utility

The approach developed in this paper largely extends to the case where pref-
erences are not quasilinear, although we must consider slightly different mecha-
nisms. We now consider utility taking the form u(y, e, p, t) where y ∈ Y , e ∈ E,
p ∈ P is now a prize (that is, a bundle of goods which may or may not include
monetary transfers), and t is the agent’s type. We focus on the case where there
exists an unambiguously most desirable prize p ∈ P , and an unambiguously least
desirable prize, p ∈ P .



VOL. VOL NO. ISSUE SELECTIVE TRIALS 35

In the case of open trials, indirect preferences take the following form:

Vt(τ , p) = max
e

∫
y
u(y, e, p, t)fy,t(τ , e)dy.

Say we want to elicit preference over (τ , p) ∈ {0, 1}×P . We assume for simplicity
that for all such (τ , p), Vt(τ = 0, p) ≤ Vt(τ , p) ≤ Vt(τ = 1, p). We normalize Vt(τ =
0, p = p) = 0 and Vt(τ = 1, p = p) = 1. Consider the following generalization of
the BDM mechanism: an agent sends a message m ∈ R{0,1}×P , which corresponds
to a value function; the principal randomly picks (τ , p, λ) from some continuous
distribution over {0, 1} × P × [0, 1]; an agent is assigned (τ , p) if m(τ , p) > λ and
the lottery λ× (τ = 1, p = p) + (1− λ)× (τ = 0, p = p) otherwise. In this setting
it is dominant for an agent to send message m = Vt. Similar mechanisms allow
us to identify indirect preferences in the case of blind and incentivized trials.

Propositions 1, 3, 4 and 5 extend directly with these generalized value functions.
Again, extending Propositions 6 and 7 requires some more work. Proposition
6—which identifies subjective returns to effort using blind trials—extends as is
when y ∈ {0, 1}, and extends according to (A1) when y takes values in a general
outcome set Y . Proposition 7 extends as is when preferences are separable in
prize p, that is, when u(y, e, p, t) = u0(y, e, t)−u1(p, t). When preferences are not
separable in prize p, incentivized trials allow us to identify fy,t(y) ∂u

∂w(y)

∣∣∣
y,p

for all

values of y and p. Note that when preferences are separable, the multiplicative
constant can be identified from the fact that probabilities sum to 1.

Implementation

B1. Implementing Open Selective Trials as a Finite Menu of Lotteries

The mechanisms described in the paper all use a continuum of messages and
elicit the agent’s exact willingness to pay. Of course, it is possible to use simpler
mechanisms to elicit coarser information. This example shows how to identify
which of N intervals an agent’s willingness to pay belongs to.

The principal chooses value thresholds −Vmax = V0 < V1 < · · · < VN = Vmax.
She can elicit the interval where an agent’s value lies by offering a menu of lotter-
ies. This menu is constructed with messages M = {1, · · · , N} and any increasing
sequence π(1) < π(2) < · · · < π(N) of sampling rates. Thus, message m ∈M cor-
responds to buying the lottery that delivers treatment with probability π(m). In
order to match these messages with the appropriate value interval, the principal
simply sets p(m), the price of lottery m, according to:

(B1) ∀k > 1, p(k) = p(k − 1) + (π(k)− π(k − 1))Vk−1.

Note that the sequence of prices is entirely determined by p(1). Denote by Gπ,p

the mechanism corresponding to this menu of lotteries, then:
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FACT 4: Under mechanism Gπ,p an agent of type t sends message k if and only
if Vt ∈ [Vk−1, Vk].

This emphasizes the many degrees of freedom the principal has when implement-
ing selective trials as menus of lotteries. The value intervals according to which
agents are classified, and the rates according to which they obtain treatment are,
to a large extent, free parameters. The only restriction is that sampling rates
must be increasing in an agent’s value (Proposition 2).

B2. Implementing Incentivized Selective Trials

This section complements Section V by describing how to implement incen-
tivized selective trials as an extension of the BDM mechanism. Let the message
space M be the set of (normalized) possible utility functions Vt(τ , w):

M =
{
m ∈ R{0,1}×R s.t. m(0, 0) = 0

}
.

Let Fτ ,w be a full support probability distribution over {0, 1}×R and let (Fp|τ ,w)(τ ,w)∈{0,1}×R
denote a set of full-support conditional probability distributions over p ∈ R. The
mechanism is run as follows: the agent submits a utility function mi. A pair
(τ i, wi) and a price pi are drawn according to Fτ ,w and Fp|τ i,wi . If pi ≤ mi(τ i, wi),
then the agent is given allocation (τ i, wi) and pays pi. If pi > mi(τ i, wi), the agent
is assigned (0, 0) and makes no transfers. Because Fτ ,w as well as Fp|τ ,w have full-
support, it is optimal for an agent to send message mi(t) = Vt(τ , w). In turn,
a mechanism is a most informative incentivized trial if and only if: (i) it elicits
value function Vt(τ , w), and (ii), for any message m, the induced distribution over
(τ , w) ∈ {0, 1} × R has full support.

Note that instead of eliciting preferences over a continuous domain {0, 1} ×
R, the same methodology can be used to elicit preferences over a finite grid.
The distribution Fτ ,w then needs to have full-support with respect to the grid of
interest.
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Proofs

FACT 1 (full support sampling): Consider a mechanism G = (M,µ). If there
exists ξ > 0 such that for all m ∈ M , π(m) ∈ (ξ, 1 − ξ), then, with infinite
samples, G0 � G.

PROOF:
The data dG can be broken in two subsamples, (dσ0(i)

G )i∈N and (dσ1(i)
G )i∈N, such

that σ0, σ1 are non-decreasing mappings from N to N, and for all i ∈ N, τσ0(i) = 0
and τσ1(i) = 1. Since ∀m, π(m) ∈ [ξ, 1 − ξ], we have that each such subsample
is infinite and we can pick σ1 and σ0 to be strictly increasing from N to N. We
define mapping h (such that h(dG) ∼ dG0) as follows.

We use the notation h(dG) = (dhi )i∈N, where dhi = (mh
i , p

h
i , τ

h
i , y

h
i ). For every

i ∈ N, set mh
i = ∅, phi = 0, and draw τhi as a Bernoulli variable of parameter π0.

Finally, set yhi = yσ
τh
i

(i). It is easy to check that indeed, h(dG) ∼ dG0 .

PROPOSITION 1 (most informative mechanisms): Any strictly incentive-compatible
mechanism G identifies at most value Vt (that is, Vt = Vt′ ⇒ mG(t) = mG(t′)).

Whenever G identifies values Vt (that is, mG(t) = mG(t′) ⇒ Vt = Vt′) and
satisfies full support (0 < infm π(m) and supm π(m) < 1), then for any strictly
incentive-compatible mechanism G′, G′ � G.

PROOF:
The proof of the first claim is very similar to that of Fact 1. Consider a mech-

anism G = (M,µG) such that every player has a strictly dominant strategy. An
agent with value V (ti) chooses a message mi to solve

max
m∈M

π(m)V (ti)− Eµ[pi|mi = m].

This problem is entirely defined by player i’s value V (ti). Since a.e. player has a
strictly optimal message, this problem has a unique solution for a.e. value.

We now construct a mapping h : D → ∆(D) such that the data generated by
G′ can be simulated from data generated by G using mapping h. For simplicity

1
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we describe the mapping h in the case where M is finite. Given dG, h(dG) is
generated as follows.

First, we break down the basic data dG in 2 × card M subsets, according
to treatment τ and the message mG(V ) corresponding to the value declared by
the agent. Formally, for all m ∈ M and τ ∈ {0, 1}, we define (dσm,τ (i)

G )i∈N the
ordered subsequence such that for all i, mG(Vσm,τ (i)) = m and τσm,τ (i) = τ . Since
0 < infm π(m) < supm π(m) < 1, all these subsamples are infinite. Hence, σm,τ
can be chosen to be strictly increasing from N→ N. We use these subsamples to
simulate data dG′ .

Let us denote h(dG) = (dhi )i∈N. For all i ∈ N, dhi = (mh
i , p

h
i , τ

h
i , y

h
i ). We first

set mh
i = mG′(Vi). Then using µG′(mh

i ), we draw values τhi and phi . Finally
we set yhi = yσ

mh
i
,τh
i

(i). This defines h : D → ∆(D). It is easy to check that

h(dG) ∼ dG′ .1 This concludes the proof.

FACT 2 (BDM Implementation): Whenever Fp has full support over [−Vmax, Vmax],
an agent with value Vt sends optimal message mBDM = Vt and the BDM mecha-
nism is a most informative mechanism.

PROOF:
The fact that the BDM mechanism elicits values is well-known. Since Fp has

full support over [−Vmax, Vmax], assignment to treatment also satisfies full support
and the second part of Proposition 1 implies that GBDM is a most informative
mechanism.

PROPOSITION 2 (monotonicity): Consider a strictly incentive compatible mech-
anism G. If agents t and t′ with values Vt > Vt′ send messages mG(t) 6= mG(t′),
then it must be that π(mG(t)) > π(mG(t′)).

PROOF:
Agents of type t and t′ are such that Vt > Vt′ and mG(t) 6= mG(t′). Denote

π(m) = Prob(τ = 1|m) and pmG = EµG(·|m)[p]. By optimality of the message, it
must be that

π(mG(t))Vt − pmG(t) > π(mG(t′))Vt − pmG(t′)

π(mG(t′))Vt′ − pmG(t′) > π(mG(t))Vt′ − pmG(t).

Adding the two inequalities yields that [π(mG(t)) − π(mG(t′))](Vt − Vt′) > 0,
which implies that π(mG(t)) > π(mG(t′)).

PROPOSITION 3 (sampling rates and incentives): For any mechanism G = (M,µ)
and ρ < ρ in (0, 1), there exists a mechanism G′ = (M,µ′) such that G � G′, and
for all m ∈M , π′(m) ∈ [ρ, ρ].

1Note that for the sake of notational simplicity, this construction ends up wasting data points by not
taking consecutive elements from the subsamples. This is inconsequential here since we have infinitely
many data points.
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The following must also hold. Denoting the expected utility of type t sending
message m in mechanism G′ (including transfers) by U(t|m,G′), then

max
m1,m2∈M

|U(t|m1, G
′)− U(t|m2, G

′)| ≤ 2(ρ− ρ)Vmax.

PROOF:
We begin with the first assertion. Given mechanism G = (M,µ), we define

mechanism G′ = (M,µ′) as follows:

∀m ∈M, µ′(m) =


τ = 0, p = 0 with probability ρ

µ(m) with probability ρ− ρ
τ = 1, p = 0 with probability ρ

Clearly, mechanism G′ is strategically equivalent to mechanism G. The proof that
G � G′ is omitted since it is essentially identical to that of Fact 1.

We now turn to the second assertion. Consider two messages m1 (optimally)
sent by a type with value V1, and m2 (optimally) sent by a type with value V2.
Let pG′(m) = EµG′ (·|m)[p]. We must have that

πG′(m1)V1 − pG′(m1) ≥ πG′(m2)V1 − pG′(m2)
πG′(m2)V2 − pG′(m2) ≥ πG′(m1)V2 − pG′(m1)

within mechanism G′. These two inequalities yield that (πG′(m2)−πG′(m1))V1 ≤
pG′(m2) − pG′(m1) ≤ (πG′(m2) − πG′(m1))V2, which implies that |pG′(m2) −
pG′(m1)| < (ρ − ρ)Vmax. Hence the difference in utilities between sending two
messages m1 and m2 for an agent with value V ∈ [−Vmax, Vmax] is |(πG′(m1) −
πG′(m2))V − pG′(m1) + pG′(m2)| ≤ 2(ρ− ρ)Vmax.

PROPOSITION 4 (most informative mechanisms): Any strictly incentive-compatible
blind mechanism G identifies at most the mapping Vt(φ) (that is, Vt(φ) = Vt′(φ)⇒
mG(t) = mG(t′)).

If G identifies Vt(φ) (that is, mG(t) = mG(t′) ⇒ Vt(φ) = Vt′(φ)) and satisfies
infφ,m µ(φ|m) > 0 then G′ � G for any strictly incentive-compatible mechanism
G′.

PROOF:
The proof of Proposition 4 is essentially identical to that of Proposition 1 and

hence omitted.

PROPOSITION 5 (a test of “intention to change behavior”):
If e∗(φ=0, t) = e∗(φ=1, t), then for all ϕ, Vt(φ=ϕ) = ϕVt(φ=1).
If e∗(φ=0, t) 6= e∗(φ=1, t), then for all ϕ ∈ (0, 1), Vt(φ=ϕ) < ϕVt(φ=1).

PROOF:
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The proof is given for the general case where there might be multiple optimal
effort choices. Let Vt(τ , e) denote the expected value of type t under treatment
status τ and when expending effort e. We have that

Vt(φ) = max
e∈E

φVt(τ=1, e) + (1− φ)Vt(τ=0, e)

≤ φmax
e∈E

Vt(τ=1, e) + (1− φ) max
e∈E

Vt(τ=0, e).

If arg maxe∈E Vt(τ = 1, e) ∩ arg maxVt(τ = 0, e) 6= ∅, the inequality is an equality
and, since we normalized Vt(φ = 0) = 0 we obtain that Vt(ϕ) = ϕVt(φ = 1).
Inversely, if arg maxe∈E Vt(τ = 1, e) ∩ arg maxVt(τ = 0, e) = ∅, the inequality is
strict and Vt(ϕ) < ϕVt(φ = 1).

PROPOSITION 6 (identifying perceived returns to effort): For any value ϕ,

∂Vt(φ)
∂φ

∣∣∣∣
ϕ

= [qt(τ=1, e∗(ϕ, t))− qt(τ=0, e∗(ϕ, t))]× [u(y=1, t)− u(y=0, t)].

PROOF:
The result follows directly from applying the Envelope Theorem to (1).

PROPOSITION 7 (identifying perceived success rates):

∀τ , w, ∂Vt(τ , w)
∂w

= qt(τ , e∗(τ , w, t)).

PROOF:
The result follows directly from applying the Envelope Theorem to (2).

FACT 3: Assume that outcome y = 1 yields strictly greater utility than y = 0,
that is, u(y=1, t) > u(y=0, t), and an agent perceives treatment to be beneficial:

∀e0 ∈ E,∃e1 ∈ E s.t. c(e1, t) ≤ c(e0, t) and qt(τ=0, e0) < qt(τ=1, e1).

Then, w0,t = max{w | Vt(τ=1, w) = Vt(τ=0, w)}.

PROOF:
Whenever w = w0,t, the agent is perfectly insured and Vt(τ = 1, w) = Vt(τ =

0, w) since access to the technology is valuable only in so far as it affects outcomes.
We now show that whenever w > w0,t, Vt(τ = 1, w) > Vt(τ = 0, w). The agent’s
value is

Vt(τ , w) = max
e∈E

qt(τ , e)[u(y=1, t)− u(y=0, t) + w] + u(y=0, t)− c(e, t).

Let e∗0 be the agent’s optimal effort level if τ = 0. By assumption, there exists
e1 such that c(e1, t) ≤ c(e∗0, t) and qt(τ = 1, e1) > qt(τ = 0, e∗0). Since w >
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w0,t = u(0, t) − u(1, t), it follows that the agent gets strictly higher value under
configuration (τ = 1, e1) than under configuration (τ = 0, e∗0). This concludes the
proof.

FACT 4: Under mechanism Gπ,p an agent of type t sends message k if and only
if Vt ∈ [Vk−1, Vk].

PROOF:
Indeed, mGπ,p(V ) = k if and only if for all k′ 6= k,

(C1) V πk − pk > V πk′ − pk′ .

For k′ < k, this last condition is equivalent to V ≥ maxk′<k{(pk−pk′)/(πk−πk′)},
which in turn is equivalent to V > Vk−1. Similarly, for k′ > k, (C1) is equivalent
to Vk > V . This concludes the proof.

A Numerical Example

This section illustrates the step-by-step process of inference from trial data,
starting with a standard RCT, adding data from open selective trials, and con-
cluding by adding both objective and subjective data from an incentivized trial.

We return to a setting where returns are two dimensional: R = (Rb, Re). As
before, in the context of a water treatment product, Rb could be the baseline
returns of using the water treatment product only when it is convenient to do so
and Re the returns to using it more thoroughly (for instance, bringing treated
water when away from home). Success rates are given by:

q(τ=0, e) = 0 and q(τ=1, e) = Rb + eRe,

where e ∈ R+ is the agent’s effort expenditure. An agent with type t has beliefs
Rt = (Rb,t, Re,t) and maximizes Et[y]− c(e) where c(e) = e2

2 . The effort expended
in an incentivized trial is thus e∗(w, t) = Re,t(1+w), which nests the effort decision
of an open trial, e∗(w=0, t) = Re,t.

Throughout, we illustrate the inference process by considering the case where
each parameter has a low and high value: Re, Re,t∈{1/4, 1/2}, Rb∈{0, 1/8} and
Rb,t ∈ {0, 3/32}. Each element of a selective trial adds data which will narrow
down the set of possible values.2

Inference from an RCT

An RCT identifies the average treatment effect, ∆̂ = Rb + Re × Re,t. For
the numerical values specified above, the possible outcomes are described in the
following matrix

2For simplicity, we consider priors that put point masses on a few possible states. Unfortunately, such
strong priors often result in degenerate inference problems. We computed the states to keep the inference
problem well-defined and better reflect the mechanics of inference from a continuous state space. This
accounts for our somewhat unusual parameter values.
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Re = 1/2 Re = 1/4

Re,t = 1/2 Re,t = 1/4 Re,t = 1/2 Re,t = 1/4

Rb = 1/8 ∆̂ = 3/8 ∆̂ = 1/4 ∆̂ = 1/4 ∆̂ = 3/16

Rb = 0 ∆̂ = 1/4 ∆̂ = 1/8 ∆̂ = 1/8 ∆̂ = 1/16.

As illustrated by the matrix, if ∆̂ ∈ {1/16, 3/16, 3/8} this identifies the returns
of the technology (Rb, Re). However, treatment effects ∆̂ ∈ {1/8, 1/4} are con-
sistent with multiple true returns.3 In particular, when ∆̂ = 1/4, it may be that
casual use of the water treatment product is not particularly effective (Rb = 0),
more thorough use is not particularly effective (Re = 1/4), or more thorough use
is effective, but agents don’t believe it is, and so do not expend much effort into
using the water treatment product more thoroughly (Re = 1/2, Re,t = 1/4.).

Inference from a Selective Open Trial

By Fact 1, open selective trials identify treatment effects ∆̂. Additionally, by
Proposition 1, an open selective trial identifies the agent’s willingness to pay for
treatment Vt = Rb,t+R2

e,t/2. To illustrate the value of this data, focus on the case
where ∆̂ = 1/4. As shown above, this is consistent with three different vectors
of (Rb, Re, Re,t). Based on this, we illustrate the six possible values of Vt in the
following matrix:

Rb = 0, Re = 1/2, Re,t = 1/2 Rb = 1/8, Re = 1/2, Re,t = 1/4 Rb = 1/8, Re = 1/4, Re,t = 1/2

Rb,t = 3/32 Vt = 7/32 Vt = 1/8 Vt = 7/32

Rb,t = 0 Vt = 1/8 Vt = 1/32 Vt = 1/8.

If Vt = 1/32 the data from selective trials indicates Re,t = 1/4 = e∗. As the
treatment effect is ∆̂ = 1/4 the only consistent returns are Rb = 1/8 and Re =
1/2. If Vt = 7/32, there remains uncertainty, as the data is consistent with both
(Rb = 0, Re = 1/2) and (Rb = 0, Re = 1/4). Finally if Vt = 1/8, the data is
consistent with any of the states (Rb, Re, Re,t) that produce ∆̂ = 1/4. That is
to say that even in this limited example, data from a selective open trial (and,
hence, MTEs) may not help in identifying underlying returns. We now turn to
how incentivized trials allow us to infer whether effort, or returns to effort, are
low.

3For example, (Rb = 0, Re = 1/2, Re,t = 1/2), (Rb = 1/8, Re = 1/2, Re,t = 1/4) and (Rb = 1/8, Re =

1/4, Re,t = 1/2) are all consistent with b∆ = 1/4.
Note that agents’ beliefs may be self-confirming. For instance, an agent who believes that effort has

high returns, Re,t = 1/2, who observes b∆ = 1/4 will continue to believe returns are high, even though this
data could be generated by Re = 1/4. Such self-confirming beliefs are frequent in the experimentation
and social learning literatures (???).
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Inference from an Incentivized Trial

Incentivized trials yield:

∆̂(w) = Rb +Re×Re,t(1 +w) and Vt(τ=1, w) = Rb,t(1 +w) +
[Re,t(1 + w)]2

2
.

As an open selective trial already identifies Vt = Vt(w = 0) = Rb,t + R2
e,t/2

and ∆̂ = ∆̂(w = 0) = Rb + Re × Re,t, by eliciting valuations and treatment

effects for a small w, the principal can also identify ∂Vt(τ ,w)
∂w

∣∣∣
w=0

= Rb,t + R2
e,t and

∂ b∆(w)
∂w

∣∣∣
w=0

= Re ×Re,t. With this data the principal can identify:

Re,t =
[
2
(
∂Vt
∂w

∣∣∣∣
w=0

− Vt(w=0)
)]1/2

,

and thus, the rest of the unknown parameters: Re = ∂ b∆(w)
∂w

∣∣∣
w=0

/
Re,t, Rb,t =

∂Vt(τ ,w)
∂w

∣∣∣
w=0
− R2

e,t, Rb = ∆̂−Re×Re,t. The same information can be identified in
a mathematically simpler, but more data intensive, way by identifying w0,t and
the empirical quantities associated with that value.

Altogether, incentivized selective trials allow us to identify both the true re-
turns (Rb, Re) and the agents’ beliefs (Rb,t, Re,t). Thus, in this example, data
from a selective incentivized trial allows a principal to determine how effective
casual and thorough use of the water treatment product is, without having to
observe individual agents’ usage. This is possible, as eliciting each agent’s indi-
rect preferences over the water treatment product, and bonuses associated with
staying healthy, allows the principal to infer the agents’ beliefs about the effects
of casual and more thorough usage. This, in turn, allows the principal to infer
behavior and identify the deep structural parameters determining the product’s
effectiveness, as well as how beliefs about effectiveness lead to different outcomes.


