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Abstract

This paper develops a prior-free version of Markowitz (1952)’s efficient portfolio
theory that allows the decision maker to express preferences over risk and reward, even
though she is unable to express a prior over potentially non-stationary returns. The
corresponding optimal allocation strategies are admissible, interior, and exhibit a form
of momentum. Empirically, prior-free efficient allocation strategies successfully exploit
time-varying risk premium present in historical returns.

Keywords: prior-free asset allocation, drawdown control, non-stationary returns,
time-varying risk premium, fear-of-missing-out, fear-of-loss, regret aversion, cost of
robustness, approximate sample optimality.

1 Introduction

Financial markets are not stationary: they can change in durable ways. Sometimes change

is anticipated. For instance, US treasury yields, which have been going down over the last

30 years, mechanically cannot keep going down much longer (see Figure 1). In this case, we

know that the next 30 years must look different. Sometimes, change is only a possibility

that decision makers are concerned with. For instance, an investor interested in investing
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Pablo Winant, as well as seminar participants at Amundi, the Bank of England, Berkeley, Capital Fund
Management, Toulouse, and Princeton. Alice Wang provided excellent research assistance.
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in a smart-beta index-fund exploiting one of the familiar premium anomalies (e.g. value,

momentum, low volatility, low beta . . . ) may be plausibly worried that those strategies will

become crowded and fail to deliver advertised returns. In a non-stationary environment, past

data provides limited guidance on future behavior which begs the following question: how to

make practical risk management and portfolio allocation decisions in such a non-stationary

world?
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Figure 1: 10 year US treasury rate, 1962–2014.1

The benchmark framework for portfolio allocation, Markowitz (1952)’s efficient portfolio

theory, is normatively attractive but requires the decision maker to specify priors over poten-

tial returns. This turns out to be practically difficult, even in static settings. Indeed, Black

and Litterman (1992) show that when historical data is used to estimate a distribution of

returns, plausible implementations of mean-variance optimal portfolios lead to sensitive cor-

ner allocations that are intuitively unappealing. In response, they suggest anchoring priors

to a neutral prior under which owning a value-weighted portfolio of all assets is optimal. In

1Soure: FREDr, https://research.stlouisfed.org/fred2/series/DGS10.
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dynamic environments with a time-varying and possibly non-stationary risk-premium, the

difficulty of specifying priors is further increased.2 The decision-maker must specify beliefs

over the entire sequence of returns, which is tricky: in high dimensional state spaces, even

full-support priors can have poor frequentist behavior (for instance failing to converge to

true parameters, e.g. Sims, 1971, Diaconis and Freedman, 1986, Ghosh and Ramamoorthi,

2003). As a consequence, neither Markowitz (1952) nor Black and Litterman (1992) provide

robust practical frameworks to guide asset allocation in dynamic environments where the

process for returns may be non-stationary. Prior-free asset allocation seeks to provide such

a framework by giving up on priors altogether.

The logic behind prior-free asset allocation matches Harry Markowitz’ description of his

actual rather than theoretical approach to portfolio construction (quoted in Zweig, 2007):

“[. . . ] I visualized my grief if the stock market went way up and I wasn’t in it –

or if it went way down and I was completely in it. My intention was to minimize

my future regret. So I split my contributions 50/50 between bonds and equities.”

This paper formalizes Markowitz’ intuitive approach as an aversion to worst-case drawdowns

(i.e. peak-to-trough losses) relative to reference safe and risky assets, in this case bonds

and equities. It solves for the corresponding optimal dynamic asset allocation policy and

argues that it provides a systematic framework for asset allocation in non-stationary, or

novel environments. One simple takeaway is that Markowitz’ 50/50 strategy is optimal in

one-shot settings, but dominated in dynamic ones.

The model considers an agent who seeks to minimize the worst-case drawdowns of her

portfolio relative to benchmark risky and risk-free assets (say the aggregate stock market and

short-term US treasuries). As in other models of non-Bayesian decision making, such as the

Gilboa and Schmeidler (1989) model of ambiguity aversion, the framework is game-theoretic.

Nature is an adversary who seeks to maximize the agent’s drawdowns relative to reference

assets. In turn, the agent chooses the dynamic allocation policy that is least gameable by

2See Campbell (1984), Campbell and Viceira (1999) or Lettau and Ludvigson (2001, 2010) for evidence
of time-variation in risk-premia.
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nature. This yields a set of dynamic allocation strategies that achieve minimal worst-case

drawdowns relative to all possible sequences of returns. Since these strategies are defined

without reference to a prior over returns, the paper refers to these strategies as prior-free

optimal.

The paper makes four points. The first is that prior-free optimal portfolios satisfy a

form of robustness to non-stationarity which is not satisfied by more obvious approaches to

asset allocation under a time-varying risk-premium. Intuitively, asset allocation strategies

that experience large drawdowns with respect to either the safe or the risky asset misjudge

average geometric returns over a large time window. More generally large drawdowns can

be interpreted as sample violations of optimality conditions. Because a prior-free optimal

allocation strategy guarantees small worst-case drawdowns there is no large time window over

which it makes ex post suboptimal allocation choices. In contrast, any allocation strategy

that is Bayesian-optimal for a full-support prior over finite hidden Markov models (Baum

and Petrie, 1966) is gameable by nature: there exists a sequence of returns for which it

experiences large drawdowns compared to one of the two reference assets.

The second point is that prior-free asset allocation lets decision makers express preferences

over risk and reward in the same way that modern portfolio theory does. Indeed, prior-free

optimal strategies define an entire frontier of minimal drawdowns. At one extreme, being

fully invested in the market guarantees zero drawdowns against the market at the cost of high

worst-case drawdowns against the safe asset. Inversely, being fully invested in the safe asset

guarantees zero drawdowns against the safe asset at the cost of high potential drawdowns

against the risky asset. The frontier of points in-between lets the decision maker express

tradeoffs between fear-of-losing (drawdowns against the safe asset) and fear-of-missing-out

(drawdowns against the risky asset). Points on this frontier map to dynamic allocation

strategies that move smoothly from aggressive to cautious.

The third point is that prior-free optimal strategies are amenable to numerical computa-

tion. The agent’s worst-case drawdown minimization problem admits a Bellman representa-

tion in which returns are not exogenously drawn from a prior, but rather endogenously picked
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by nature. The corresponding value function and strategy can be expressed as a function of

a four dimensional summary statistic of past history. This representation allows to establish

some theoretical results of interest: prior-free optimal portfolios are largely interior, and they

satisfy a form of momentum. A multi-asset version of the prior-free framework admits an

equally tractable representation after appropriate relaxation.

Finally, the paper provides a brief numerical and empirical exploration of this prior-free

approach to portfolio optimization. Under worst-case analysis, prior-free portfolios improve

significantly over popular portfolio construction rules, such as regularly rebalanced portfolios

(RRP) and constant proportion portfolio insurance (CPPI, Black and Perold (1992)), both of

which sit quite far away from the minimal drawdown frontier. More generally, this provides

a systematic framework in which to evaluate technical trading rules: any fully specified allo-

cation strategy (this includes RRP, CPPI, time-series momentum, volatility control, moving

average rules) can be mapped against the worst-case drawdown frontier. The benefits of any

strategy of interest (e.g. the in-sample performance of a volatility-control strategy) can then

be weighed against the potential worst-case drawdowns it may experience.

In principle, the high degree of robustness required from prior-free optimal strategies

may come at a cost. Indeed, if the true process for returns were i.i.d., a fixed regularly

rebalanced portfolio may deliver better performance than a prior-free optimal portfolio whose

allocation changes with realized market returns. This is not the case in the empirical sample

of returns. Prior-free optimal strategies perform well in the historical time-series of returns,

which suggests that they are able to capture time-variation in risk-premium present in the

data. This is confirmed by a Henriksson and Merton (1981) test. Prior-free portfolios achieve

asymmetric β exposures to the market in good and bad years (.7 vs .4). Importantly, there

is little scope for data-snooping bias (Lo and MacKinlay, 1990) when backtesting prior-free

optimal strategies. Prior-free optimal portfolios have a single free parameter, the potential

magnitude of moves of nature, and it is set in advance of any exposure to data.

The paper connects to an applied literature in portfolio management that seeks to usefully

operationalize Markowitz (1952)’s approach. Black and Litterman (1992) also place priors
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at the center of their analysis. They show that näıve implementations of Markowitz (1952)

are extremely sensitive to prior assumptions over returns, or equivalently, to the sample of

data used to calibrate parameters. To address the issue, they suggest anchoring priors to a

default prior that rationalizes owning the market portfolio. Constant proportion portfolio

insurance (CPPI), developed in Perold (1986), Black and Jones (1987) and Black and Perold

(1992), also avoids priors and proposes a simple class of investment rules that provide risky

upside exposure, while providing prior-free downside risk protection. The approach proceeds

by using a cushion of safe assets, and leveraging funds above this cushion. However, CPPI

can experience large drawdowns with respect to both the safe asset and the risky asset.

Grossman and Zhou (1993) tackle the issue of drawdown control in a Bayesian setting where

a fund manager wishes to exploit an asset with known fixed expected returns, but is subject

to drawdown constraints versus a safe asset.

The worst-case approach emphasized in this paper is related to models of ambiguity aver-

sion axiomatized by Gilboa and Schmeidler (1989) and to multiplier preferences popularized

in Macroeconomics and Finance by Hansen and Sargent (2001, 2008). Cai et al. (2000) and

Pflug and Wozabal (2007) apply the ambiguity averse framework to static portfolio con-

struction, where it leads to more conservative allocations. Glasserman and Xu (2013, 2014)

extend the approach to dynamic environments with trading costs and argue that it leads

to better out-of-sample performance. Note that models based on multiplier preferences still

rely on an anchoring prior that nature can perturb at a cost. This theoretical literature

has an applied counterpart (see for instance Ceria and Stubbs, 2006, Asl and Etula, 2012)

that seeks to better take into account model uncertainty when making portfolio allocation

decisions.

Because drawdowns use reference assets to benchmark performance, the preferences ex-

plored in this paper are related to regret-averse and reference-dependent preferences that

have received attention in the statistical (Wald, 1950, Savage, 1951, Milnor, 1954, Stoye,

2008) and behavioral literatures (Tversky and Kahneman, 1991, Kőszegi and Rabin, 2006).

It is closely related to the question of online regret minimization originally studied in Black-
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well (1956), Hannan (1957) (see Cesa-Bianchi and Lugosi, 2006, for a recent reference). The

portfolio allocation problem studied here is also connected to Cover (1991) and DeMarzo

et al. (2009), both of which derive prior-free lower bounds on portfolio performance.

More broadly, this paper contributes to a growing agenda in economics which seeks to

rethink economic design questions from a prior-free perspective. Segal (2003), Bergemann

and Schlag (2008), Hartline and Roughgarden (2008), Madarász and Prat (2016) and Brooks

(2014) study auctions, pricing, and screening. Chassang (2013), Carroll (2014) and Antic

(2014) study incentive provision. The current paper adds to this agenda in two ways. First,

it provides a prior-free version of Markowitz (1952) which allows decision makers to express

meaningful preferences over risk and reward while allowing for arbitrary non-stationarity in

returns. Second, it provides an empirical evaluation of prior-free approaches in a practical

context. It shows that the cost of robustness need not be large, and that in fact, prior-free

optimization may improve over existing benchmarks in the realized historical sample. In

addition, prior-free approaches reduce concerns of data-snooping bias.

The paper is structured as follows. Section 2 defines the framework and the prior-free

asset allocation problem. Section 3 quantifies robustness to non-stationarity and shows that

it is not achieved by a natural class of Bayesian optimal policies. Section 4 provides a gen-

eral Bellman characterization of prior-free optimal allocation policies. Section 5 establishes

qualitative properties assuming that trading costs are equal to zero. Section 6 extends the

framework to multiple assets and reinterprets low drawdowns as sample versions of optimal-

ity conditions. Section 7 provides a brief empirical evaluation of prior-free asset allocation

strategies. Section 8 concludes. Appendix A extends the empirical analysis and discusses

decision-theoretic foundations, as well as possible Bayesian refinements, of the prior-free

approach. Proofs are contained in Appendix B unless mentioned otherwise.
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2 Framework

2.1 Setup

Returns. An investor with finite horizon N ∈ N allocates resources across two assets: a

safe asset with returns at time t ∈ N denoted by r0
t , as well as a risky asset — say the market

— with returns at time t denoted by r1
t (see Section 6 for an extension to multiple risky

assets). The set of possible returns rt = (r0
t , r

1
t ) at time t is denoted by M ⊂ R2 and referred

to as moves of nature. For simplicity, and anticipating computational implementation, it is

assumed that set M is finite and satisfies the following minimal richness assumption.

Assumption 1. There exists r ∈ M such that r0 = r1. There exist (r, r̂) ∈ M2 such that

r0 > r1, and r̂0 < r̂1. Set M contains at least three non-diagonal returns r such that r0 6= r1.

In computational applications, set M will take the form M = {r0} × {r0 + n∆|n =

−k, · · · ,+k} for k ∈ N. Let us denote by r = max{|r0|, |r1| for r ∈M} an upper bound to

the magnitude of returns in M .

Allocations. The set of possible allocations A = ∆({0, 1}) ⊂ R is compact and convex.

An allocation at ∈ A ⊂ R2 at the beginning of period t yields a return rat = 〈at, rt〉, where

〈·, ·〉 denotes the usual dot product.

Given returns rt for period t, and invested wealth wt at t, wealth and asset shares at the

beginning of period t+ 1 (denoted t+ 1−) are given by

wt+1− = wt(1 + rat ); a0
t+1− =

a0
t (1 + r0

t )

1 + rat
; a1

t+1− =
a1
t (1 + r1

t )

1 + rat
. (1)

It is possible to reallocate assets at the beginning of each period, but reallocation is costly.

Specifically, moving from at+1− to at+1 costs a proportion c(at+1− , at+1) ≥ 0 of the existing

asset base. Denote by c ≡ maxa,â c(a, â) the highest trading cost. In numerical applications,

trading costs will take the form c(a, â) = c1|a0 − â0|, with c1 = .002 (i.e. 20 bps). Invested

wealth after reallocation is wt+1 = [1− c(at+1− , at+1)]wt+1− .
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Allocation strategies. An allocation strategy αmaps each history of returns ht = (rs)s∈{0,··· ,t−1} ∈
H to an allocation at. We denote by A the set of possible allocation strategies. Taking into

account trading costs, the returns associated to allocation strategy α in period t, denoted

by rαt take the form

1 + rαt = (1 + 〈α(ht), rt〉)(1− c(at− , α(ht)). (2)

For a state space Z sufficiently large, any allocation strategy can be described as an

automaton depending on state z ∈ Z with transition rule φ:

α : z ∈ Z 7→ α(z) ∈ A (3)

φ : (z, r) ∈ Z ×M 7→ φ(z, r) ∈ Z. (4)

An initial allocation a0 and a sequence of returns r = (rt)t∈N induces the sequence of alloca-

tions (at)t≥1 defined by

∀t ≥ 1, zt = φ(zt−1, rt−1) and at = α(zt).

This paper seeks to formalize the following normative question: what are good dynamic

asset allocation strategies for a decision maker who worries that returns may be arbitrarily

non-stationary?

2.2 Bayesian optimal asset allocation

A standard model of dynamic asset allocation might take the following form. A decision

maker with investment horizon N and log-utility over final wealth is able to place a prior

µ ∈ ∆(MN+1) over possible returns. Her optimal asset allocation strategy α then solves

max
α∈A

Eµ

[
N∑
t=0

log(1 + rαt )

]
. (5)

Unfortunately, this positive description of behavior provides little normative guidance to
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investors. This becomes particularly clear after mapping the problem of choosing an asset

allocation strategy in the axiomatic framework of subjective utility theory (Savage, 1972).

A realized sequence of returns r = (rt)t≥0 is an event. A dynamic asset allocation strategy

is a Savage act mapping events to financial outcomes for the decision maker. Provided that

a decision-maker has well-behaved preferences over acts, subjective expected utility theory

tells us that the decision-maker’s behavior can be represented as maximizing an expected

utility function.

Subjective utility theory obviously isn’t a normative framework. Priors are inferred from

preferences over acts; optimal acts are not obtained from priors. Still, subjective utility

theory is routinely used for normative purposes. Black and Litterman (1992) implicitly

highlight some of the difficulties that normative uses of subjective expected utility generate.

They specify a Gaussian prior over returns, and use historical estimates to set mean and

covariance parameters. Presuming mean-variance preferences, they show that such beliefs

imply extreme corner allocations that are intuitively unappealing. They then propose using

priors that would justify holding a value-weighted portfolio. Black and Litterman (1992)’s ex

post assessment that extreme allocations are unappealing, and their response — modifying

priors until they yield a more palatable allocation — demonstrate that priors are an output,

inferred from preferences over actions, not a primitive of the decision problem.

The normative decision rule that would start by eliciting beliefs and then maximizing

utility is even more tricky to implement in the dynamic setting considered in this paper.

When the process for returns is potentially non-stationary, picking well behaved priors turns

out to be difficult. The literature on frequentist properties of Bayesian estimates (Diaconis

and Freedman, 1986, Ghosh and Ramamoorthi, 2003) shows that generic priors over large

dimensional objects (here sequences of returns) may fail to satisfy consistency properties

that common frequentist estimators robustly satisfy. Section 3 makes this point concretely.
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2.3 Mostly prior-free asset allocation

This paper is written from a normative perspective. It specifies preferences over alloca-

tion strategies, argues that they are intuitively appealing, and studies the strategies that

maximize them. Markowitz’ description of his own investment behavior, suggests the three

following observations:

• decision-makers fear net losses;

• decision-makers fear missing out on potential gains;

• decision-makers do not have sophisticated beliefs over patterns of returns.

Definitions 1, 2, 3 formalize preferences over allocation strategies that capture these premises.

Definition 1 (relative drawdowns). Given an allocation strategy α : H → ∆({0, 1}) and a

sequence of returns r ≡ (rt)t∈{0,··· ,N}, drawdowns D0
N and D1

N relative to the safe and risky

asset are defined as

D0
N(α, r) = max

T∈{0,··· ,N}
T ′∈{0,··· ,T+1}

T∑
t=T ′

log(1 + r0
t )− log(1 + rαt ) (6)

D1
N(α, r) = max

T∈{0,··· ,N}
T ′∈{0,··· ,T+1}

T∑
t=T ′

log(1 + r1
t )− log(1 + rαt ). (7)

Given realized returns r ≡ (rt)t∈{0,··· ,N}, the relative drawdowns of strategy α correspond

to strategy α’s maximum relative losses against the safe and risky assets over arbitrary

subperiods [T ′, T ] ⊂ [0, N ]. Figure 2 shows how to compute the drawdowns of a 50/50 fixed-

weights strategy over the market and the risk-free rate during the 2007–2012 period.3 Note

that the time window [T ′, T ] over which each drawdown occurs are different for the risk-free

and risky assets.

Definition 2 (worst-case drawdowns). Given a strategy α, worst-case drawdowns are defined

by

3Returns are obtained from Kenneth French’s data library available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

11



2007 2007 2008 2009 2010 2011

0.6

0.4

0.2

0.0

0.2

fixed-weights
risk-free
market

(a) cumulated log-returns

2007 2007 2008 2009 2010 2011

0.1

0.0

0.1

0.2

0.3

0.4

drawdowns vs. 
 safe asset

risk-free minus fixed-weights

(b) drawdowns, risk-free minus fixed-weights

2007 2007 2008 2009 2010 2011

0.4

0.3

0.2

0.1

0.0

0.1

drawdowns vs. 
 risky asset

market minus fixed-weights

(c) drawdowns, market minus fixed-weights

Figure 2: drawdowns relative to the safe and risky assets for a 50/50 fixed-weights strategy,
2007–2012.

D0

N(α) = max
r∈MN+1

D0
N(α, r) (8)

D1

N(α) = max
r∈MN+1

D1
N(α, r). (9)

Potential net losses are captured by strategy α’s worst-case drawdown D0

N(α) against

the safe asset. Potential foregone gains are captured by strategy α’s worst-case drawdown

D1

N(α) against the risky asset.

The decision maker’s fear-of-loss and fear-of-missing out are expressed by her willingness
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to trade-off drawdowns against the safe and the risky asset. Allocation strategies that attain

optimal trade-offs are referred to as prior-free optimal.

Definition 3 (prior-free efficient portfolios). A portfolio allocation strategy α is prior-free

efficient if there exists λ ∈ ∆({0, 1}) such that α solves

min
α̂∈A

max
i∈{0,1}

λiDiN(α̂). (Pλ)

Given λ ∈ ∆({0, 1}), denote by αλ a solution to (Pλ). The corresponding drawdowns are

denoted by Di,∗N (λ) ≡ DiN(αλ). The minimal drawdown frontier Γ is described by

Γ ≡
{(
Di,∗N (λ)

)
i∈{0,1}

∣∣∣λ ∈ ∆({0, 1})
}
.

Define the associated function γ(D0) = inf{D1|(D̂0,D1) ∈ Γ for D̂0 ≤ D0}.

Lemma 1. Frontier mapping γ is continuous and strictly decreasing.

Frontier γ lets the investor make continuous trade-offs between fear-of-loss and fear-of-

missing-out in a simple and straightforward manner. Given a tolerable worst case drawdown

D0 against the safe asset, it returns the best possible drawdown guarantee D1 against the

risky asset.

Two extreme points. Two points of the frontier are easily characterized. At one

extreme, it is possible to ensure no drawdowns against the safe asset by being entirely

invested in the safe asset. This results in the largest possible drawdowns against the risky

asset. Inversely, it is possible to ensure no drawdowns against the risky asset by being

entirely invested in the risky asset. This results in the largest possible drawdowns against

the safe asset.

The remainder of this paper is interested in the set of points in between these two

extremes. It argues that the corresponding prior-free asset allocation strategies achieve the
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following desiderata: (i) they provide robust performance guarantees for arbitrarily non-

stationary processes for returns; (ii) they let the decision-maker express meaningful risk-

preferences over complex acts in a simple manner; (iii) they perform well in the data.

3 Robustness to Non-Stationarity

This section motivates the use of prior-free optimal strategies by: (i) highlighting their

robustness to non-stationarity, (ii) highlighting the difficulty of finding priors that lead

to robust Bayesian-optimal strategies. Section 6 further motivates the use of drawdown-

minimizing strategies by reinterpreting drawdowns as sample versions of standard optimality

conditions.

3.1 Drawdown control and robustness

Intuitively, strategies that guarantee low drawdowns perform well in environments with time

varying risk-premia since they guarantee performance close to that of the best-performing

asset over any subperiod [T ′, T ] ⊂ [0, N ]. This is captured by the following performance

bound.

Proposition 1 (a performance bound). Consider a strategy α, a sequence of returns r. For

all time periods T1 < T2 ≤ N , and for all i ∈ {0, 1},

T2∑
t=T1

log(1 + rαt ) ≥
[

T2∑
t=T1

log(1 + rit)

]
−DiN(α).

For all time sequences 0 = T1 < T2 < · · · < Tn = N + 1,

N∑
t=0

log(1 + rαt ) ≥
n−1∑
k=1

max
i∈{0,1}

{[
Tk+1−1∑
t=Tk

log(1 + rit)

]
−DiN(α)

}
.

In other terms, drawdown guarantees imply lower bounds on the performance of strategy

14



α. Up to a penalty Di(α), it performs at least as well as asset i over any subperiod [T1, T2].

Conversely, a strategy that experiences a large drawdown (say of order N) vis à vis either

asset is making a binary allocation error (whether to be invested in the safe or risky asset)

over a long period of time. This motivates the following definition.

Definition 4. A sequence of asset allocation strategies (αN)N∈N (indexed on increasing time

horizon N) is said to be robust to non-stationarity if and only if

∀i ∈ {0, 1}, lim
N→∞

DiN(αN)

N
= 0.

We now show that for a natural class of full-support priors, Bayesian optimal strategies

are not robust to non-stationarity.

3.2 Fragility of finite hidden Markov models

Hidden Markov models are a popular and flexible way to model time-varying processes. How-

ever, Proposition 2 (below) shows that priors over hidden Markov models lead to strategies

that can be defeated by an adversarial nature.

A K-state hidden Markov chain over returns with states in Z = {1, · · · , K} is described

by m = (φ, ξ) ∈ (∆(Z))Z × (∆(M))Z , where φ : Z → ∆(Z) is a Markov chain describing

transitions between unobserved states z ∈ Z (with initial state normalized to 1), and ξ maps

states z ∈ Z into distributions over observed returns r ∈M . A hidden Markov chain induces

a stochastic process over unobserved states (zt)t≥0 and observed returns (rt)t≥0 defined by

z0 = 1 and

∀t ≥ 0, zt+1 ∼ φ(zt) and rt ∼ ξ(zt).

Note that the setMK of hidden Markov chainsm with less thanK states is finite dimensional

and compact. This implies that one can easily define full-support priors µ over MK .
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Any Bayesian prior µ ∈ ∆(MK) over K-state hidden Markov chains is associated with

Bayesian optimal policies αB
µ solving

max
α∈A

Eµ

[
N∑
t=0

log(1 + rαt )

]
.

Such a Bayesian-optimal strategy reflects the investor’s updating over the likelihood of dif-

ferent underlying Markov chains, as well as the state these chains may be in. Note that

the investor’s posterior belief is itself a Markov chain with infinite (in fact continuous) state

space ∆(MK). As a result, it is able to capture many transient patterns of returns, and it

is a plausible guess that the corresponding allocation policy could be robust in the sense of

Definition 4. Proposition 2 shows that this isn’t the case.

Proposition 2. Take K, c,M as given. For any full support prior µ ∈ ∆(MK) there exists

ν > 0 such that for all N ∈ N and any Bayesian optimal strategy αB
µ ,

max
r∈MN+1

max
i∈{0,1}

DiN(αB
µ , r) > νN.

In words, any Bayesian-optimal allocation policy derived from a full support prior over

finite hidden Markov chains is susceptible to drawdowns of order N . As a result, it is not

robust to non-stationarity.

3.3 The possibility of robustness

To be useful as a selection criterion, robustness to non-stationarity needs to be non-empty.

Proposition 3 shows that indeed, there exist allocation strategies that guarantee sublinear

drawdowns for all possible realized sequences of returns.

Proposition 3 (robustness). For all c < 1 and r, there exists h > 0 and a strategy α such

that

∀N ∈ N, max
r∈MN+1

max
i∈{0,1}

DiN(α, r) ≤ h
√
N. (10)
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Together, Propositions 2 and 3 establish that it is possible to find strategies that are

robust to non-stationarity, but they cannot be obtained by modeling the underlying returns

as an unknown finite hidden Markov model.

An immediate corollary of Proposition 3 is that prior-free optimal strategies are robust

to non-stationarity. Indeed they achieve the smallest possible drawdowns.

Corollary 1. For any λ ∈ (0, 1)2, the sequence of prior-free optimal strategies (αλ,N)N∈N

(indexed on time horizon N) is robust to non-stationarity.

It is important to note that robustness to non-stationarity is only an asymptotic prop-

erty which is achieved by many strategies. In this respect, focusing on prior-free optimal

strategies, which achieve exact minimal drawdowns, has several benefits:

• it provides the best possible control on drawdowns, optimizing constants, which could

matter for empirical evaluations with moderate investment horizon N ;

• by providing a uniquely optimal strategy, it limits the scope for specification search,

alleviating concerns of overfitting prevalent in the asset-pricing literature (Lo and

MacKinlay, 1990, Novy-Marx, 2014);

• it provides a benchmark by which to evaluate the robustness of asset allocation strate-

gies that are attractive for other reasons (e.g. in-sample performance);

• it provides a systematic framework for optimal dynamic allocation which can incorpo-

rate relevant economic features of the problem, such as trading costs, or restrictions

on the process of returns (e.g. bounds on P/E ratios . . . ).4

4 Computing Prior-Free Optimal Strategies

This section shows how to express the problem of computing prior-free optimal asset alloca-

tion strategies as a manageable dynamic programming problem. The first step is to identify

a convenient state space. Consider an allocation strategy α.

4See Appendix A for a discussion of various ways to place restrictions, including probabilistic ones, on
the set of possible returns.
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For i ∈ {0, 1}, and T ∈ {0, · · · , N}, define regrets

Ri
T (α, r) ≡ max

T ′∈{0,··· ,T+1}

T∑
t=T ′

log(1 + rit)− log(1 + rαt ). (11)

Regret Ri
T differs from drawdown DiT in that the endpoint T of the period over which

under-performance is measured is fixed. In fact, we have that DiT = maxT ′≤T Ri
T ′ . Lemma 2

shows that Ri
T can be used to compute worst-case drawdowns, and is described by a simple

dynamic process.

Lemma 2. For all α ∈ A,

(i) ∀i ∈ {0, 1}, maxr∈MN+1 DiN(α, r) = maxr∈MN+1Ri
N(α, r);

(ii) ∀T < N , Ri
T+1 =

[
Ri
T + log(1 + riT+1)− log(1 + rαT+1)

]+
.

Point (i) implies that to compute drawdown-minimizing strategies, it is sufficient to

compute regret-minimizing strategies (this result uses the fact that there exists a return r

such that r0 = r1). Point (ii) clarifies why this observation is valuable: regrets at time T + 1

can be computed as a function of regrets at time T and returns at time T + 1. In contrast,

drawdowns at time T + 1 depend on drawdowns at time T , returns at time T + 1, but also

on returns at previous periods.

Denote by RT ≡ (Ri
T )i∈{0,1} the vector of regrets, and define state zt = (t, at− ,Rt−1).

For any λ ∈ ∆({0, 1}), value function Wλ over states z is recursively defined as follows.

Wλ(zT ) =

 maxi∈{0,1} λiRi
T if T = N + 1

minaT∈A maxr∈M Wλ(zT+1) if T ≤ N
(12)

where zT+1 =
(
T + 1, aT+1− ,

[
Ri
T−1 + log(1 + riT )− log(1 + rαT )

]+)
i∈{0,1}

.

This provides a straightforward way to compute prior-free optimal allocation strategies.

Proposition 4 (Bellman formulation). Let z0 = (0, a0, 0, 0). The following hold.
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(i) minα maxi∈{0,1} λiDiN(α) = Wλ(z0).

Drawdown minimizing policy α∗λ depends only on states (zt)t≥0 and is defined by

∀zt, α∗λ(zt) ∈ arg min
at∈A

max
rt∈M

Wλ(zt+1).

(ii) The Pareto frontier of worst-case drawdowns is described by

Γ =

{(
1

λi
Wλ(z0)

)
i∈{0,1}

for λ ∈ ∆({0, 1})
}
. (13)

Figure 3 represents the Pareto frontier of minimal drawdowns for moves of nature M =

{0} × {−.02,−.01, 0, .01, .02} and time horizon N = 260 (i.e. 5 years, each period corre-

sponding to a week), computed using the algorithm laid out in Proposition 4. Each direction

λ ∈ {(.5, .5), (.55, .45), (.6, .4)}maps to the prior-free optimal allocation strategy αλ such that

λ0DN0 (α) = λ1DN1 (α).

The frontier is convex and sits well to the South-West of the line-segment between extreme

points corresponding to λ = (0, 1) and λ = (1, 0). This suggests that it is possible to find

attractive trade-offs between fear-of-loss and fear-of-missing-out.

Computing the worst-case drawdowns of arbitrary strategies. This paper focuses

on strategies minimizing worst-case drawdowns, however, worst-case drawdowns need not

be the only criterion on which allocation strategies are evaluated. In that case, the Pareto

frontier Γ characterized by Proposition 4 remains useful as a benchmark to evaluate the

robustness of alternative strategies that are attractive according to other criteria (e.g. in

sample performance).

To do this, it is necessary to compute the worst-case drawdowns of arbitrary alternative

strategies. Corollary 2 (below) shows that the Bellman approach remains useful in this case.

Consider an asset allocation strategy defined by an automaton (α, φ) over some state space
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Figure 3: the drawdown frontier, λ ∈ {(.5, .5), (.55, .45), (.6, .4)}, N = 260 (weeks), M =
{0} × {−.02,−.01, 0, .01, .02}.

Z. For each i ∈ {0, 1}, define state xit = (t, at− , zt,Ri
t−1) and introduce value function V i

α

over states xi recursively defined as follows.

V i
α(xiT ) =

 Ri
T−1 if T = N + 1

maxr∈M Vα(xiT+1) if T ≤ N.
(14)

Corollary 2. For any i ∈ {0, 1}, let xi0 = (0, a0, z0, 0). We have that DiN(α) = V i
α(xi0).

Of course, this Bellman representation is only useful if state space Z has small dimension-

ality. When strategy α depends on a large state-space (which can be the case for strategies

depending on truncated moving averages), worst-case drawdowns should be evaluated us-

ing Monte Carlo or genetic algorithms approaches designed for high-dimensional numerical

optimization (Golberg, 1989, Glasserman, 2003).
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5 Qualitative Properties

Proposition 4 provides a computational method to characterize drawdown minimizing poli-

cies for arbitrary trading costs and arbitrary moves of nature M . It is instructive to derive

qualitative properties of prior-free optimal allocation strategies under the simplifying as-

sumption that trading costs c are equal to 0 and that M = {0} × {−r, 0, r}.
We first note that prior-free optimal strategies are admissible. Recall that αλ denotes

the solution to the original max-min problem (Pλ).

Proposition 5 (admissibility). For every λ ∈ ∆({0, 1}), there exists a prior µλ ∈ ∆(MN+1)

such that

αλ ∈ arg max
α∈A

Eµλ

[
N∑
t=0

log(1 + rαt )

]
.

In other terms, there always exists a prior over returns for which a prior-free optimal

strategy is also Bayesian optimal. Of course, as was emphasized in Sections 2 and 3, the

difficulty is coming up with such a prior. The thesis defended by this paper is that expressing

preferences over the properties of allocation strategies directly (here low drawdowns) is both

a decision theoretically correct, and practical way to approach dynamic asset allocation.

What prior over moves of nature rationalizes prior-free optimal strategies can be further

understood by taking a game-theoretic perspective. Note that since trading costs are equal

to 0, allocation at is no longer a state variable. Abusing notation, zt ≡ (t,Ri
t)i∈{0,1} is now

a sufficient state. For any zt, a, r, define payoff function

Uλ(zt, a, r) ≡ Wλ(zt+1)

where zt+1 =
(
t+ 1,

[
Ri
t−1 + log(1 + ri)− log(1 + ra)

]+)
i∈{0,1}

.

Lemma 3. (i) Payoff function Uλ(zt, a, r) is convex in a.

(ii) Optimal allocation αλ(zt) is a Nash equilibrium strategy in the zero-sum game

against nature with actions (a, r) and payoffs −Uλ(zt, a, r) to the investor.
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(iii) The drawdown frontier γ : D0 7→ γ(D0) is convex in D0.

The investor plays a stochastic zero-sum game against nature and prior-free optimal

allocation strategies are Nash equilibria of this game. This game-theoretic interpretation is

helpful in characterizing optimal policies.

5.1 A game-theoretic characterization

Explicit characterization for T = N . Solving for the optimal policy in period T = N

helps delineate the mechanics of optimal drawdown control. Note that since returns to

the safe asset r0 are equal to 0, nature’s only choice is to pick returns to the risky asset

r1 ∈ {−r, 0, r}.
At T = N , for regrets R0,R1, the investor picks the allocation a∗ = (a∗,0, a∗,1) solving

min
a1∈[0,1]

max
r1∈{−r,0,r}

{[
R0 − log(1 + a1r1)

]+
,
[
R1 + log(1 + r1)− log(1 + a1r1)

]+}
.

Lemma 4. (i) Whenever R0−R1 ∈ (log(1−r), log(1+r)), the optimal allocation

a∗ is strictly interior, i.e. a1,∗ ∈ (0, 1).

(ii) If R0 − R1 ≥ log(1 + r), the optimal allocation is a1,∗ = 0. If R0 − R1 ≤
log(1− r), the optimal allocation is a1,∗ = 1.

Proof. Point (ii) is immediate. Whenever R0−R1 ≤ log(1−r), for any allocation a1 ∈ (0, 1)

and r ∈ M , R1 + log(1 + r1) − log(1 + a1r1) > R0 − log(1 + a1r1), which implies that the

optimal allocation a1 minimizes maxrR1 +log(1+r1)− log(1+a1r1), i.e., a1,∗ = 1. A similar

reasoning holds when R0 −R1 ≥ log(1 + r).

Point (i) exploits the fact that optimal allocation a∗ is a Nash equilibrium in the zero-sum

game against nature with payoffs −U(zt, a, r). Hence, it is sufficient to show that neither

a1,∗ = 0 nor a1,∗ = 1 can be part of a Nash equilibrium. Indeed, if a1,∗ = 0, then, since

R0 −R1 ∈ (log(1− r), log(1 + r)), nature’s strict best response is to set r = r. This yields

worst-case regrets R1 + log(1 + r) − log(1 + a1r), inducing best response a1,∗ > 0 from the
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investor. A similar reasoning shows that a1,∗ = 1 cannot be part of an equilibrium either.

This implies that the only equilibrium is in mixed strategies.

An immediate corollary is that whenever R0 − R1 /∈ (log(1 − r), log(1 + r)), W (zN) =

max{R0,R1}. When R0 − R1 ∈ (log(1 − r), log(1 + r)), since a1,∗ ∈ (0, 1), it is strictly

optimal for nature to pick returns in {−r, r}, which implies that W (zN) > max{R0,R1}.
Furthermore, nature must be indifferent between picking −r and r (otherwise, the investor

would not use an interior strategy). This implies that an optimal allocation a∗ must satisfy

R0 − log(1− a1,∗r) = R1 + log(1 + r)− log(1 + a1,∗r)

⇐⇒ a1,∗ =
1

r
× (1 + r) exp(R1 −R0)− 1

(1 + r) exp(R1 −R0) + 1
. (15)

This yields value function

WN(R0,R1) =

 max{R0,R1} if R0 −R1 /∈ (log(1− r), log(1 + r))

log [(1 + r) expR1 + expR0]− log 2 otherwise.

Characterization for T < N . Lemma 4 extends as follows. Define ~0 = − log(1 − r),
and ~1 = log(1 + r).

Proposition 6. For all t ∈ {0, · · · , N}, λ ∈ ∆({0, 1}), αλ(R0,R1, t) is continuous in

(R0,R1). Furthermore, for all i ∈ {0, 1},

(i) if λiRi ≥ λ−i [R−i + (N − t)~i], then αiλ(Ri,R−i, t) = 1;

(ii) if λiRi−λ−iR−i ∈ (−(N − t)~−i, (N − t)~i), then αiλ(Ri,R−i, t) ∈ (0, 1) and

Uλ(zt, α(zt), r) = Uλ(zt, α(zt),−r). (16)

Lemma 4 and Proposition 6 have substantial implications.
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5.2 Qualitative implications

Interior allocations. As Black and Litterman (1992) emphasize, näıve implementations

of Markowitz (1952)’s approach to portfolio allocation frequently generate extreme corner

allocations. One possible fix is to place ad hoc constraints on allocations. Alternatively,

Black and Litterman (1992) suggest anchoring priors to benchmark priors constrained to

justify holding the market portfolio. An immediate corollary of Proposition 6 is that the

prior-free approach naturally leads to non-corner solutions, without the help of ad hoc side-

constraints.

Corollary 3. For all λ ∈ ∆({0, 1}), there exists ν > 0 such that for all N and all sequences

of returns r,

1

N + 1

N∑
t=0

1αλ,N (zt)∈(0,1)2 ≥ 1− ν 1√
N + 1

.

In other words, for any realization of returns, prior-free optimal allocations are interior

for a share of periods asymptotically equal to 1.

Momentum. An influential literature documents the profitability of momentum strate-

gies which buy recent overperforming stocks, while selling recent underperforming stocks

(Jegadeesh and Titman, 1993, 2001, Barberis et al., 1998, Hong and Stein, 1999, Hong et al.,

2000, Moskowitz et al., 2012, Asness et al., 2013), and proposes behavioral explanations for

this apparent departure from the efficient market hypothesis.

Even though prior-free optimal strategies are not calibrated using historical data, they

also exhibit momentum. This reflects the fact that they attempt to optimize asset allocation

in arbitrarily non-stationary environments. Returns need not go back to the mean, and

momentum emerges as a response to the fact that one asset may well keep performing better

than an other. Formally the following result holds.

Corollary 4. Let T1 = bρ1Nc < bρ2Nc = T2, with ρ1, ρ2 fixed.5 For any ε > 0, consider a

probability measure µ over (r1
t )t∈{T1,T1+1,··· ,T2} such that ∀t ∈ {T1, · · · , T2}, Eµ

[
r1t

1+r1t

∣∣ht] > ε

5As usual, bxc denotes the integer part of x, defined as bxc = max{n ∈ N|n ≤ x}.
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then,

µ a.s., lim
N→+∞

1

T2 − T1

T2∑
t=T1

α1
λ,N(ht) = 1.

The condition Eµ
[

r1t
1+r1t

∣∣ht] > ε — expected returns weighed by marginal utility are

sufficiently high — implies that a history ht, allocating all wealth to the risky asset yields

strictly higher expected log-returns than any other allocation in ∆({0, 1}).
Corollary 4 states that if the returns from the risky asset are drawn from a distribution

with sufficiently positive mean over the time interval [T1, T2], then the allocation to the risky

asset must go to one. A converse holds if the returns to the risky asset are drawn from a

distribution with sufficiently negative mean. Note that to be compatible with Corollary 3,

Corollary 4 requires the allocation to converge to a corner allocation from the interior.

History dependence. Another notable property of prior-free optimal allocation strategies

is that even though log preferences do not exhibit a wealth effect, past investment experience

affects the investors’ continuation behavior. Investors investing in the same period who have

experienced different histories of returns will choose different allocations. This is because

drawdown minimization is a reference-dependent objective, with the reference point being

dependent on the investor’s personal history.

This can be illustrated with a simple example. Consider a two-period investment problem,

with time denoted by t ∈ {0, 1}. A young investor is born in period 1, and an old investor

is born in period 0. Both investors share the same preference parameter λ = (.5, .5) and the

magnitude of potential returns is r = .02. Expression (15) implies that the young investor

will allocate 49.5% of her wealth to the risky asset. The allocation of the old investor depends

on her experience at time t = 0. We know by Proposition 6 that she must have chosen an

interior allocation in period t = 0. If the risky asset yielded returns r1
0 = −r, she experienced

drawdowns against the safe asset, and by expression (15) must place a weight strictly less

than 49.5% on the risky asset. Inversely, if the risky asset yielded returns r1
0 = r, she

experienced drawdowns against the risky asset, and by expression (15) must place a weight

25



strictly higher than 49.5% on the risky asset.

This property echoes Malmendier and Nagel (2011)’s finding that investors exhibit het-

erogenous risk preferences as a function of their personal histories. Specifically, they show

that poor realized returns make investors significantly more risk-averse, in a way that’s not

quantitatively explained by wealth effects.

6 Multi-Asset Allocation

So far the analysis has focused on allocating resources to a single risky asset. This sec-

tion extends the prior-free approach to several risky assets. Along the way, it suggests a

reinterpretation of drawdowns as optimality conditions.

Framework. Consider an environment with several risky assets i ∈ I = {1, · · · , I} and

a single risk-free asset denoted by 0. For simplicity, trading costs are set to zero. Let

aIt = (ait)i∈I and a0
t respectively denote allocations to the risky and risk-free assets at time t.

Allocations aI to risky assets must belong to the product set A =
∏

i∈I A
i with Ai = [ai, ai].

In addition total allocation weights must sum to one, so that a0 = 1 −∑i∈I a
i. Note that

short-selling is implicitly allowed. The overall allocation is denoted by a = (a0, aI). For

simplicity, returns r0 ≥ 0 to the risk-free asset are constant over time. Risky returns rI =

(ri)i∈I belong to a set MI of moves of nature taking the form MI =
∏

i∈IM
i ⊂ (−r, r)I ,

with r ∈ (0, 1). Let r = (r0, rI).

Consider now the problem of a Bayesian investor maximizing her subjective expected

utility. In each period t, the investor chooses the allocation aIt that solves

max
aI∈A

E[log(1 + 〈rt, a〉)|Ft] (17)

where Ft denotes the investor’s information set at t. Take as given ∆ > 0. For σ ∈ {−,+}
and any allocation a, denote by φ+(a, i) and φ−(a, i) allocations identical to a except that the
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ith coordinate is shifted up or down by an amount ∆. Under the paper’s notation, φσ(a, i)j

denotes the weight assigned to asset j by allocation φσ(a, i). Formally, we have that

φ+(a, i)i = ai,+ ≡ min{ai + ∆, ai} and ∀j ∈ I \ i, φ+(a, i)j = aj;

φ−(a, i)i = ai,− ≡ max{ai −∆, ai} and ∀j ∈ I \ i, φ−(a, i)j = aj.

By definition, for any T ′ ≤ T ≤ N , solutions (a∗t )t∈{T ′,··· ,T} to (17) cannot be improved by

shifting the allocation in any direction. As a result, for all i ∈ I, under the investor’s prior,

T∑
t=T ′

E[log(1 +
〈
rt, φ

+(a∗t , i)
〉
)|Ft]− E[log(1 + 〈rt, a∗t 〉)|Ft] ≤ 0 (18)

T∑
t=T ′

E[log(1 +
〈
rt, φ

−(a∗t , i)
〉
)|Ft]− E[log(1 + 〈rt, a∗t 〉)|Ft] ≤ 0. (19)

Using finite sample versions of the central limit theorem,6 this implies that when returns

are drawn from the investor’s prior, then, with probability approaching 1 for N large, for all

T ′ ≤ T ≤ N ,

T∑
t=T ′

log(1 +
〈
rt, φ

+(a∗t , i)
〉
)− log(1 + 〈rt, a∗t 〉) ≤ O(

√
N)

and,
T∑

t=T ′

log(1 +
〈
rt, φ

−(a∗t , i)
〉
)− log(1 + 〈rt, a∗t 〉) ≤ O(

√
N).

Define drawdowns Di,+N and Di,−N as

Di,+N = max
T ′≤T≤N

T∑
t=T ′

log(1 +
〈
rt, φ

+(a∗t , i)
〉
)− log(1 + 〈rt, a∗t 〉),

Di,−N = max
T ′≤T≤N

T∑
t=T ′

log(1 +
〈
rt, φ

−(a∗t , i)
〉
)− log(1 + 〈rt, a∗t 〉).

6Specifically, the Hoeffding-Azuma inequality. See Cesa-Bianchi and Lugosi (2006), Lemma A.7 for a
reference.
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These drawdowns capture maximal losses relative to strategies that systematically increase

or decrease their exposure to a specific asset. Keeping these drawdowns low is a sample

expression of optimality conditions (18) and (19).

Note that the optimality conditions being tested depend on the step of the deviation ∆.

Indeed, the drawdowns sudied in Sections 2 to 5 correspond to setting ∆ = 1, ai = 0 and

ai = 1. In that case, the drawdowns D0
N and D1

N of Sections 2 to 5 satisfy D0
N = D1,−

N and

D1
N = D1,+

N . Smaller steps ∆, correspond to more local deviations, and potentially allow

for finer optimization. For any asset allocation strategy α ∈ A, mapping public histories to

allocations, define maximum drawdowns as follows:

∀i ∈ I, σ ∈ {+,−}, Di,σN (α) = max
r∈MN+1

Di,σN (α, r)

Take as given a deviation step ∆ > 0, and let Λ be the set of weights λ = (λ+, λ−), such

that λ+ + λ− = 1.7

Definition 5 (prior-free allocation strategies). A dynamic asset allocation strategy α ∈ A
is prior-free optimal if there exists λ ∈ Λ such that α solves

min
α∈A

max
i∈I

max
σ∈{−,+}

λσDi,σN (α). (P Iλ )

Computation and key properties. The remainder of this section clarifies difficulties in

finding numerical solutions to P Iλ and identifies an approximately optimal class of strategies

amenable to numerical computation and theoretical analysis.

For all T ≤ N , let

Ri,σ
T (α, r) ≡ max

T ′≤T

T∑
t=T ′

log(1 + 〈rt, φσ(a∗t , i)〉)− log(1 + 〈rt, a∗t 〉).

An argument identical to that of Lemma 2 implies that for all α ∈ A,

7Weights λσ could also be indexed on i.
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Di,σN (α) = Ri,σ

N (α)

Ri,σ
T+1 = max{0,Ri,σ

T + log(1 + 〈rT+1, φ
σ(αT+1, i)〉)− log(1 + 〈rT+1, αT+1〉)}.

Since there are no trading costs, current allocations are not a state variable in Problem

P Iλ . An argument identical to that of Proposition 4 implies that optimal asset allocation

policies α are a function of state zt = (t,Ri,+
t ,Ri,−

t )i∈I . Unfortunately, the problem of picking

an optimal allocation αI over risk-assets cannot be separated in I independent problems.

The returns r−i of assets other than i affect the optimal allocation to asset i. This implies

that problem P Iλ becomes numerically intractable as the number I of risky assets becomes

large.

Fortunately, a relaxed problem admits computationally tractable solutions that are ap-

proximate solutions to P Iλ . For any i, let

M¬i =

∑
j∈I\i

aj(rj − r0)
∣∣∣ aI ∈ A, rI ∈M

 .

M¬i is the set of possible returns differentials due to allocations to assets other than i.

Recall the notation ai,+ = min{ai+∆, ai} and ai,− = max{ai−∆, ai}. For all ai ∈ [ai, ai],

ri ∈M i, r¬i ∈M¬i, define

gσ(ai, ri, r¬i) ≡ log(1 + ai,σri + (1− ai,σ)r0 − r¬i)− log(1 + airi + (1− ai)r0 − r¬i).

For any i ∈ I,

Ri,σ
T (α, r) = max

T ′≤T

T∑
t=T ′

gσ(αit, r
i
t, r
¬i
t ) with r¬it =

∑
j∈I\i

αjt (r
j
t − r0).

In Problem P Iλ , returns r¬i are not freely chosen by nature. They are jointly determined

by the allocation aI and returns rI . The relaxed problem increases nature’s degrees of

freedom by allowing it to independently pick (ri)i∈I and (r¬i)i∈I . Denote by ri and r¬i
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sequences (rit)t∈{0,··· ,N}, (r¬it )t∈{0,··· ,N}. For any strategy αi ∈ Ai, mapping histories to the

weight assigned to asset i, let

G
i,σ

N (αi) ≡ max
ri,r¬i

max
T ′≤T≤N

T∑
t=T ′

gσ(αit, r
i
t, r
¬i
t ).

Let α∗,iN denote a solution to

min
αi∈Ai

max
σ∈{−,+}

λσG
i,σ

N (α). (P̂ i
λ)

This problem is associated with states zit = (t,Ri,+
t ,Ri,−) and value function

W i
λi

(ziT ) =

 maxσ∈{+,−} λ
σRi,σ

T if T = N + 1

minaiT∈Ai maxri∈M i maxr¬i∈M¬iW
i
λ(z

i
T+1) if T ≤ N.

(20)

Proposition 7. The following hold:

(i) ∀α ∈ A,Di,σN (α) ≤ G
i,σ

N (αi);

(ii) ∀i ∈ I, ∀σ ∈ {+,−}, λσGi,σ

N (α∗,iN ) = O(
√
N);

(iii) α∗,iN depends only on states zit and α∗,iN (zit) solves

min
ai∈Ai

max
ri∈M i

max
r¬i∈M¬i

W i
λi

(zit+1).

In words, solutions to problem P̂ i
λ are easily computable, and provide an approximate

solution to problem P̂ i
λ. The fact that drawdowns are sublinear in N implies the following

extension of Corollary 4.

Let T1 = bρ1Nc < bρ2Nc = T2, with ρ1, ρ2 fixed. Assume that for t ∈ {T1, · · · , T2},
returns rt are i.i.d. with a distribution µ. Furthermore, assume that for all i ∈ I, there

exists σi ∈ {+1,−1} such that

∀aI ∈ A, σiEµ
[
ri − r0

1 + 〈a, r〉

]
> 0 (21)
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where a = (a0, a
I). This implies that problem maxaI∈A Eµ[log(1+〈a, r〉)] has a unique corner

solution a∗,I ∈∏i∈I{ai, ai}.

Corollary 5. If condition (21) holds, then prior-free optimal strategy α∗,iN satisfies

∀i ∈ I, µ- a.s., lim
N→+∞

1

T2 − T1

T2∑
t=T1

α∗,iN (ht) = a∗,i.

In other terms, the prior-free optimal strategy must approach the Bayesian optimal allo-

cation when it takes extreme values. It is worth noting that Corollary 5 holds regardless of

the history of returns occuring before time T1. Even after long histories, prior-free optimal

allocation strategies do not become doctrinaire. They adapt to new circumstances.

Corollary 5 also clarifies that although Problems P Iλ and P̂ i
λ let nature pick returns to

each asset independently, the resulting strategies respond to correlation between assets. For

instance, if one asset is redundant because it is highly correlated to another asset with higher

returns, then, prior-free asset allocation strategies (relaxed or not) will assign minimal weight

to this asset.

7 Practical Evaluation

This section evaluates the behavior of prior-free optimal asset allocation against two bench-

mark risk-management strategies (applied to the risk-free asset, and a single risky asset):

• the first is the simple 1/n benchmark, whose out-of-sample robustness is emphasized

in DeMiguel et al. (2009);

• the second is constant proportions portfolio insurance (CPPI Black and Perold, 1992).

The 1/n solution is implemented as a quarterly-rebalanced portfolio, targeting a 50/50

fixed-weight allocation between the safe and risky assets.8 CPPI is an especially relevant

8Here, the 1 over n strategy serves as the simplest possible benchmark, similar to a popular 60/40
allocation. The robustness of the 1 over n approach documented by DeMiguel et al. (2009) is important
when the number of assets becomes large, so that the correlation matrix between assets can become near
singular. The current paper makes no empirical claim regarding such large asset allocation problems.
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benchmark since its goal is also to provide prior-free performance guarantees. The version of

CPPI tested in this section takes the following form: the investor tracks her counterfactual

wealth ŵt if she had invested only in the safe asset; a share of her actual wealth wt equal

to 75% of her counterfactual wealth ŵt is invested in the safe asset. The remaining cushion

wt− .75ŵt is leveraged once and invested in the risky asset. If the price process is continuous

and rebalancings occur sufficiently frequently, CPPI guarantees the investor 75% of her

wealth if she had invested in the safe asset, while also providing exposure to the risky asset.

7.1 Worst-case performance

Figure 4 plots the worst-case drawdowns of both the fixed-weights portfolio and the CPPI

portfolio against the prior-free efficient frontier in the case where a period corresponds to

a week, N = 260, and M = {0} × {−.02,−.01, 0, .01, .02} and trading cost c is equal to

20 basis points. Mechanically, both the fixed-weights portfolio and CPPI must sit to the
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Figure 4: worst-case drawdowns for prior-free efficient, fixed-weights and CPPI strategies.

North-East of the efficient frontier. In fact, they sit quite far away from the efficient frontier.
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The reason why the fixed-weights portfolio can experience large drawdowns is clear. It

keeps the allocation close to 50/50 even if the risky asset keeps yielding positive (or negative)

returns.

A more surprising finding is that CPPI can also experience large drawdowns even though,

it is designed to provide performance guarantees. As Figure 5 illustrates, CPPI experiences

drawdowns against the safe asset if the risky asset experiences large gains followed by equally

large losses. Indeed, after large gains, CPPI will keep a large exposure to the risky asset

until those gains are lost. Inversely, CPPI experiences large drawdowns versus the risky asset

if large losses are followed by equally large gains. Indeed, if cumulated losses over a large

number of periods make CPPI approach the 75% mark, CPPI will then limit its holding of

the risky-asset for a commensurate number of periods, resulting in large drawdowns versus

the risky asset during the rebound.
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Figure 5: returns generating high drawdowns for the CPPI strategy.
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7.2 Historical performance

If market returns were i.i.d., prior-free optimal strategies could not possibly improve on

the performance of a fixed-weight allocation. However, if risk-premia exhibit significant

variation, prior-free optimal strategies may out-perform fixed-weight strategies. Whether

this is the case is an empirical question.

Table 1 reports findings from running the fixed-weights, CPPI, and prior-free optimal

strategies defined above, on the sample of market and risk-free returns from January 1st

1927 to December 31st 2014, obtained from Kenneth French’s data library. Each strategy is

implemented over rolling periods of 5 years, starting January 1st of each of the 88 years in

the sample. Trading costs are set to 20 basis points.

Denoting by Ê expectations under the empirical sample of daily returns, the following

statistics are reported (counting 252 trading days in a year):

• net annualized performance net perf = 252× Ê [rαt − r0
t ];

• annualized Sharpe ratios

Sharpe ≡ Ê [rα − r0]√
Ê [(rα − r0)2]

√
252;

• worst-case 5 year relative drawdowns D0, D1 versus the safe and risky asset over the
entire period;

• net-performance to drawdown ratio

net-perf to drawdown ≡ net perf

D0

. (22)

• parameters α and β from CAPM regression

rα − r0 ∼ α + β(r1 − r0) + ε. (23)

estimated using annualized returns (N=88), and reporting robust standard errors.

The net performance-to-drawdown ratio defined in (22) summarizes each strategy’s ability

to capture upside while reducing drawdowns.
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fixed-weights CPPI prior-free
net perf 3.7% 4.7% 6.2%
Sharpe .45 .48 .56
D0 .54 .37 .29
D1 .44 .53 .37
net-perf to drawdown .07 .12 .21
α .000 .004 .014∗∗∗

(.001) (.005) (.006)
β .49∗∗∗ .56∗∗∗ .62∗∗∗

(.003) (.024) (.027)
∗, ∗∗ and ∗∗∗ respectively denote effects significant at the .1, .05 and .01 level,
standard errors are given in parentheses.

Table 1: In-sample performance of fixed-weights, CPPI, and prior-free optimal strategies,
1927–2014, N = 88.

The main finding is that instead of reducing in-sample performance, prior-free optimal

strategies improve the Sharpe, the performance, and especially the performance-to-drawdown

ratio of the underlying portfolios. Prior-free asset allocation strategies successfully capture

time-varying risk-premium.

Figure 6 reports the cumulative log-returns of being long the prior-free portfolio and short

the fixed-weights portfolio. Dotted lines separate the sample period in periods of thirty years:

1927–1957, 1957–1987, 1987–2014. The prior-free optimal portfolio over-performs in each

subsample, but especially so in the 1927–1957 sample where large swings in returns make

drawdown control especially valuable. The long-short strategy’s Sharpe ratio over these

three subsamples is respectively .54 (1927–1957), .20 (1957–1987), and .30 (1987–2014).

Figure 7 provides further insight into the circumstances in which the prior-free optimal

strategy improves on the fixed-weight portfolio. It plots the quantiles of the distribution of

returns under the prior-free portfolio against quantiles of the distribution of returns of the

fixed-weight portfolio. The prior-free optimal strategy improves both the left and the right

tail of returns, but this comes at a cost for yearly returns in the [−.05, .05] range. This makes

intuitive sense: in a range-bound market, the prior-free optimal strategy shifts its allocation

following small up and down movements. These adjustments guarantee limited drawdowns
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Figure 6: excess log-returns of prior-free optimal portfolio over fixed-weights strategy, 1927–
2014.

in case a bull or bear market should emerge. However, if the market remains range-bound,

this results in unnecessary transaction costs.

Appendix A reports further empirical findings. First, a Henriksson and Merton (1981)

market-timing regression shows that prior-free optimal asset allocation strategies achieve

asymmetric β exposure to the market in good and bad years (.7 vs. .4). Second, the prior-

free allocation strategy improves on a strategy that goes long the market and hedges large

losses using put options. Third, the main empirical findings are not sensitive to the choice

of parameters used in setting up drawdown-control problem Pλ.

8 Conclusion

This paper provides a prior-free framework for asset allocation in arbitrarily non-stationary

environments. The framework allows decision makers to express risk-preferences by trading

off fear-of-loss (potential drawdowns against the safe asset) and fear-of-missing-out (potential
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Figure 7: quantile-quantile plot of yearly returns for prior-free optimal strategy and fixed-
weights strategy, 1927–2014.

drawdowns against the risky asset). Prior-free optimal allocation strategies are amenable

to numerical computation, they are largely interior, and they satisfy a form of momentum.

Finally, they are history dependent.

Practically, prior-free optimal strategies offer worst-case drawdown guarantees that im-

prove significantly over those offered by fixed-weight strategies or CPPI. In addition, prior-

free optimal strategies perform well in the sample of historical returns, showing that the cost

of robustness need not be prohibitive. This is encouraging evidence for a growing agenda that

seeks to rethink economic design without probabilistically sophisticated decision makers.

Apendix A presents some extensions. It reports additional information on the behavior

of prior-free optimal strategies in data, including robustness checks. In addition, it provides

further decision-theoretic perspective on the approach, as well as a discussion of how to

extend the prior-free framework to include incomplete probabilistic insights, i.e. restrictions

on the likelihood of aggregate events.
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Appendix

A Extensions

A.1 Empirical analysis

Market timing and asymmetric risk exposure. Prior-free optimal strategies are in-

trinsically market timing strategies seeking to achieve asymmetric exposure to market gains

and losses. Merton (1981) and Henriksson and Merton (1981) provide a framework to eval-

uate market timing strategies built on the observation that a good market-timing strategy

essentially provides a cheap option, delivering asymmetric exposure to gains and losses.

Table A.1 reports the results from running a Henrikssen-Merton regression of the form

rα − r0 ∼ β1(r1 − r0) + β2(r1 − r0)− + ε (24)

where (r1 − r0)− ≡ max{0,−(r1 − r0)}. Coefficient β1 represents the strategy’s average

exposure to the market when net market returns r1− r0 are positive. Coefficient β2 captures

the reduction in market exposure when net market returns r1 − r0 are negative. Being fully

invested in the market would yield β1 = 1 and β2 = 0. In contrast, a free at-the-money call

option on the market would achieve perfect market timing with β1 = β2 = 1. Table A.1

shows that the prior-free optimal strategy achieves an exposure to the market of .7 when the

market is going up, and an exposure to the market of .4 = .7− .3 when the market is going

down. As expected, the fixed-weight strategy achieves a roughly constant exposure to the

market of roughly .5.

fixed-weights prior-free
β1 0.49∗∗∗ 0.70∗∗∗

(.003) (.022)
β2 -0.02 0.30∗∗∗

(.006) (.042)

Table A.1: Henrikssen-Merton regression, yearly returns, 1927–2014, N = 88.

It is instructive to price the returns of the prior-free optimal strategy against those of an

option-based strategy achieving similar asymmetric exposure to the market and providing

similar performance guarantees (worst case drawdowns under 30% over a 5 year period). For

this exercise, the market is replaced with the S&P 500. The benchmark long/put strategy
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consists of being long the S&P 500 and buying one-year put options with strike price equal

to 98% of the current market price. Returns are computed using option price data from

the CBOE available for the time period 1996-2014. Because of this shorter time period,

returns are aggregated semiannually rather than annually, meaning that standard errors

should be interpreted more cautiously. Table A.2 reports coefficients from a Henrikssen-

Merton regression (24) over the time-period 1996-2014. It confirms that the prior-free and

long/put strategies offer comparable asymmetric exposures to positive and negative returns.

prior-free long/put
β1 0.72∗∗∗ 0.66∗∗∗

(.045) (.065)
β2 .35∗∗∗ 0.19∗

(.071) (.101)

Table A.2: Henrikssen-Merton regression, prior-free and long/put strategies, semiannual
returns, 1996-2014, N = 36.

Table A.3 reports OLS estimates of regression

rprior-free − r0 = α + β(rlong/put − r0) + ε. (25)

It confirms that the prior-free strategy is highly correlated to the long/put strategy, but

offers asymmetric exposure to positive and negative returns at a significantly lower cost (i.e.

a semiannual α of .0121).

α β
0.0121∗∗∗ 0.857∗∗∗

(.004) (.059)

Table A.3: Pricing of prior-free returns, semiannual returns, 1996-2014, N = 36.

Sensitivity to parameters. Table A.4 reports the in-sample performance of prior-free

allocation strategies other than the one studied in Section 7 (λ = (.5, .5), M = {−.02, 0, .02},
N = 260). It considers

• variation in the weights: λ = (.5, .5) vs. (.45, .55) or (.55, .45);

• variation in the possible moves of nature: ±2%/week vs. ±4%/week;
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• variation in the time horizon: 5 years (N = 260) vs. 3 years (N = 156).

fixed-weights prior-free (pf), benchmark pf, λ = (.45, .55)
net perf 3.7% 6.2% 6.5%
Sharpe .45 .56 .54
D0 .54 .29 .30
D1 .44 .37 .36
net perf to drawdown .07 .21 .22

pf, λ = (.55, .45) pf, M = {−.04, 0, .04} pf, 3 year horizon
net perf 5.8% 5.8% 6.0%
Sharpe .55 .55 .56
D0 .28 .31 .31
D1 .42 .37 .39
net perf to drawdown .21 .19 .19

Table A.4: in-sample performance for various prior-free optimal strategies, 1927–2014, N =
88.

A.2 A decision theoretic perspective

It is useful to cast the approach to dynamic asset allocation developped in this paper in the

framework of Savage (1972). As was already emphasized, an event is a realization of returns

r = (r0
t , r

1
t )t∈{0,··· ,N}, and an act is an allocation strategy α ∈ A mapping events r to realized

portfolio returns (rαt )t∈{0,··· ,N}. The premise of Savage (1972) is that it is possible to obtain

from the decision maker a preference-ranking over acts. If such a ranking is well-behaved it

is then possible to extract an implicit prior over returns r.

Practically, the space of actsA— i.e. possible allocation strategies — is simply too big for

it to be ranked by a decision maker. Instead, a plausible strategy consists of describing acts

through a set of moments, and asking the decision-maker to express incomplete preferences

over a small dimensional subset of moments providing a meaningful summary of each act.

Formally, a moment function is a mapping φ : α ∈ A 7→ φ(α) ∈ R. For a sufficiently

large family of moment function Φ = (φ0, φ1, · · · ), an act α will be uniquely indentified by

its moments (φ0(α), φ1(α), · · · ). Incomplete preferences over a subset of moments induce

incomplete preferences over acts.

This paper can be thought of as implementing such an approach with moments Φ =

(φ0, φ1) with φ0(α) = D0

N(α) and φ1(α) = D1

N(α). A natural expansion would add in-sample

40



performance as an additional moment, setting Φ = (φ0, φ1, φ2) with φ2(α) = 1
N+1

∑N
t=0 log(1+

rα,sample
t ) with rsample a relevant sample of returns. Further moments of interest may include

sample drawdowns, sample Sharpe, worst-case drawdowns under different assumptions about

nature, the distribution of the size and frequency of drawdowns, and so on.

From this perspective, the approach of this paper may be thought of as exploring an

approximation of realistic preferences obtained by focusing on two moments of plausible

first-order importance.

A.3 Bridging the prior-free and Bayesian approaches

The minimax framework used in this paper allows nature to pick any sequence of returns

r ∈ MN+1. This ensures that prior-free optimal strategies are robust to arbitrary non-

stationarity. As was discussed in Section 5, this implies that prior-free optimal strategies

must satisfy some form of momentum. As a result, like momentum strategies, prior-free

optimal strategies are unanchored to a fundamental value which leads to allocation errors if

there exists a true process that exhibits some form of return to the mean (Stein, 2009, Lou

and Polk, 2013). This concern indirectly reflects the fact that the decision maker is willing

to express some fundamental restrictions on the process for returns. A natural approach

would be to include these restrictions directly in the minimax optimization problem. A full

fledged investigation is left for further work, but it can be cast along the following lines.

Two types of retrictions may be considered. Non-probabilistic restrictions along the lines

already developed in this paper are straightforward. One would restrict the set Q ⊂ MN+1

of possible returns and for every λ ∈ ∆({0, 1}), solve the problem

min
α∈A

max
r∈Q

max
i
λiDiN(α, r). (26)

For instance the decision maker may be willing to state hard bounds on the possible aggre-

gated growth in asset prices, corresponding to a set Q of the form

Q =

{
r
∣∣∀T ∈ {0, · · · , N}, T∑

t=0

log(1 + r1
t ) ∈

[
aT + b, aT + b

]}

with parameters (a, b, a, b) ∈ R4 given by the decision-maker.

Alternatively, one may try to capture the problem of a partially sophisticated decision

maker. The decision-maker is able to identify coarse sets of events Qk ⊂ MN+1 for k ∈

41



{1, · · · , K}, and places a probabilistic restriction [πk, πk] on the likelihood that nature picks

a sequence r from Qk. The decision maker then picks the allocation strategy α solving

min
α∈A

max
π∈Π

K∑
k=1

πk max
r∈Qk
i∈{0,1}

Di(α, r) (27)

where π = (πk)k∈{1,··· ,K} and Π = ∆({1, · · · , K}) ∩∏K
k=1[πk, πk].

Problem (27) allows to capture the objectives of decision makers with various degrees of

probabilistic sophistication: it bridges both the prior-free framework of this paper and the

fully sophisticated Bayesian framework. The research agenda going forward is to find useful

practical ways to do so.

B Proofs

B.1 Proofs for Section 2

Proof of Lemma 1: By construction, γ must be weakly decreasing. Furthermore, since

both D0,∗
N (λ) and D1,∗

N (λ) are continuous in λ, it follows that Γ is connected and γ is also

continuous. Let us show that γ is strictly decreasing. Pick D0 and ε > 0. Let D1 = γ(D0).

We show that there exists a strategy α such that D0
(α) ≤ D0 + ε and D1

(α) < D1.

By compactness of A and continuity of mappings Di, there exists αA that attains D0

and D1. Consider the allocation strategy α constructed as follows: in period 0, a share η of

wealth is invested in asset 1 and is not rebalanced; a share 1− η is invested according to αA.

By continuity of D0
, for η > 0 small enough, D0

(α) < D0 + ε. Furthermore, for any T ′ ≤ T ,

T∑
T ′

log(1 + r1
t )− log(1 + rαt ) ≤ log

(
T∏

t=T ′

(1 + r1
t )

)
− log

(
η
∏T

t=0(1 + r1
t ) + (1− η)

∏T
t=0(1 + rα

A

t )

η
∏T ′−1

t=0 (1 + r1
t ) + (1− η)

∏T ′−1
t=0 (1 + rα

A

t )

)

≤ log

(
T∏

t=T ′

(1 + r1
t )

)
− log

(
a
∏T

t=T ′(1 + r1
t ) + b

∏T
t=T ′(1 + rα

A

t )

a+ b

)

≤ b

a+ b

T∑
t=T ′

log(1 + r1
t )− log(1 + rα

A

t )

where a = η
∏T ′−1

t=0 (1 + r1
t ) and b = (1− η)

∏T ′−1
t=0 (1 + rα

A

t ). Since a and b are bounded above

and bounded away from 0, it follows that D1
(α) < D1

(αA).
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B.2 Proofs for Section 3

Proof of Proposition 1: The proof is immediate from the definition of Di(α).

Proof of Proposition 2: Pick rA, rB, rC ∈ M such that such that r0
X < r1

X for X ∈
{A,B} and r0

C > r1
C . Note that since M is bounded, there exists ρ ∈ (0, 1) such that

whenever prob(r ∈ {rA, rB}) is close enough to 1, the allocation a0 = 0, a1 = 1 solves

maxa∈A E [log(1 + ra)] .

Consider the hidden Markov chain m0 = (φ0, ξ0) defined as follows:

∀k ∈ {1, · · · , K}, φ0(k) = δ(k mod K)+1

ξ0(k) =

{
rA if k 6= K

rB if k = K

where δ denotes the usual Dirac mass. Markov chain m0 has a unique sequence of states ẑ,

and a unique realization r̂, which takes the form(rA, · · · , rA, rB, rA · · · ). Given a sequence r

of returns, we define rT ≡ (rt)t∈{0,··· ,T} and rT
′:T ≡ (rt)t∈{T ′,··· ,T}.

We identify the set of Markov chains MK with the finite-dimensional compact set

(∆(Z))Z × (∆(M))Z , endowed with the sup norm. For η > 0, let Bη(m0) denote the open

ball of Markov chains in MK within distance η of m0. For ρ ∈ (0, 1) define Mρ the set of

Markov chains in MK such that prob(r ∈ {rA, rB}|z) ≤ ρ for some state z ∈ {1, · · · , K}.
We use the following lemma, which we prove below.

Lemma B.1. Pick ρ > .5. For all T and m ∈Mρ,

log
(
probm0

(r̂T )
)
− log

(
probm(r̂T )

)
> − T

K
log ρ. (28)

For all η < .5 and m ∈ Bη(m0)

log
(
probm0

(r̂T )
)
− log

(
probm(r̂T )

)
≤ 4ηT. (29)

We now exploit the fact that after N0 periods under sequence r̂, a Bayesian investor’s

beliefs are highly concentrated on Markov chains such that the optimal policy is to invest

fully in asset 1, and will remain so for a large amount of time, even if the returns of asset 1
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systematically underperform those of asset 0.

There exists ρ ∈ (0, 1) and ε > 0 such that if probµ(Mρ|hT ) ≤ ε, then the optimal

allocation in period T is a0
T = 0, a1

T = 1. Pick η > 0 such that d0 ≡ − 1
K

log ρ+2 log(1−η) > 0.

Let Dη(m0) ≡ {(φ, ξ) ∈ Bη(m0) | ∀z, ξ(z)(rC) ≥ η/2}. From Lemma B.1 and Bayes law, it

follows that

probµ
(
Mρ|rN0

)
≤ probµ

(
Mρ

)
probµ(rN0|Mρ)

probµ (Dη(m0)) probµ(rN0|Dη(m0)) + probµ
(
Mρ

)
probµ(rN0|Mρ)

≤ probµ
(
Mρ

)
probµ(Dη(m0))

exp (−d0N0) .

Consider the history rN0,N1 consisting of r̂N0 followed by a sequence (rC , · · · , rC) of N1

realization rC . Since rC has probability bounded away from 0 under m ∈ Dη(m0), there

exists d1 > 0 such that

probµ
(
Mρ|rN0,N1

)
≤ probµ

(
Mρ

)
probµ(Dη(m0))

exp (−d0N0 + d1N1) .

Hence, for N large, one can find N0 and N1 of order N such that under realization

rN0,N1 , the Bayesian optimal policy is to invest entirely in asset 1 over the time interval

{N0, · · · , N0 +N1}. This results in a drawdown of at least N1[log(1 + r0
C)− log(1 + r1

C)] vis

à vis asset 0.

Proof of Lemma B.1: Note that probm0
(r̂T ) = 1. For any n ∈ N, and m ∈Mρ,

probm(r̂nK+1:(n+1)K |̂rnK) =
∑

znK+1:(n+1)K

prob(r̂nK+1:(n+1)K |znK+1:(n+1)K)prob(znK+1:(n+1)K |̂rnK).

For all znK+1:(n+1)K such that sequence r̂nK+1:(n+1)K has positive probability, either:

• there exists z ∈ {znK+1, · · · , z(n+1)K} such that prob(r ∈ {rA, rB}) ≤ ρ,

• the same state z occurs twice in sequence znK+1:(n+1)K but is associated with two

different realizations of returns r

• the same state z occurs twice in sequence znK+1:(n+1)K−1 followed up with two distinct

continuation states.

Under each of these events, for all m ∈ Mρ, probm(r̂nK+1:(n+1)K |znK+1:(n+1)K) ≤ ρ, which
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implies (28). Inequality (29) follows from the fact that for all m ∈ Bη(m0)

probm(r̂T ) ≥ probm(r̂T , ẑT ) ≥ (1− η)2T

⇒ log(probm(r̂T )) ≥ −4ηT.

Proof of Proposition 3: The proof is constructive an uses a slowly rebalanced strategy

roughly adapted from Cover (1991). Let bxc (resp. dxe) denote the highest (lowest) integer

less than (higher than) x. Consider the following allocation strategy α whose decision to

buy or sell assets depends on time alone:

∀hT , α(hT ) =

{
(.5, .5) if T ∈ {k2 | k ∈ N}
aT− otherwise.

in words, strategy α is a buy-hold strategy which rebalances to symmetric allocation (.5, .5)

every period T ∈ {k2 | k ∈ N}. By construction if T = k2, there have been k+1 rebalancings.

This implies that by period T , this strategy experienced trading costs in at most
√
T + 1

periods.

Let us now bound the difference in log returns that can be accumulated over any time

interval of the form [k2, (k + 1)2], excluding trading costs. We have that for all i ∈ {0, 1},

(k+1)2∑
t=k2

log(1 + rit)− log(1 + rαt ) = log

(k+1)2∏
t=k2

(1 + rit)

− log

1

2

(k+1)2∏
t=k2

(1 + r0
t ) +

1

2

(k+1)2∏
t=k2

(1 + r1
t )


≤ log 2.

We now prove inequality (10). Define c ≡ maxa,a′∈A c(a, a
′). We use the fact that there

exists h0 > 0 such that ∀a ∈ A, i ∈ {0, 1}, r ∈ M , log(1 + ri) − log(1 + ra) ≤ h0. We also

use the fact that for any T ,

d
√
T e2 − b

√
T c2 ≤ 2

√
T + 1.
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For any T ′ ≤ T and i ∈ {0, 1}, the following hold

T∑
t=T ′

log(1 + rit)− log(1 + rαt ) ≤
d
√
T e2∑

t=b
√
T ′c2

log(1 + rit)− log(1 + rαt ) + h0(2
√
T + 1)

≤ d
√
T e log 2 + d

√
T ec+ h0(2

√
T + 2)

≤ h1

√
N.

This concludes the proof.

Proof of Corollary 1: Consider the strategy α defined in the proof of Proposition 3. There

exists h such that ∀i ∈ {0, 1}, DiN(α) ≤ h
√
N.

By definition, αλ,N satisfies

max
i∈{0,1}

λiDiN(αλ,N) ≤ max
i∈{0,1}

λiDiN(α) ≤ h
√
N,

which implies that

lim
N→∞

DiN(αλ,N)

N
= 0.

B.3 Proofs for Section 4

Proof of Lemma 2: Let us begin with point (i). It is immediate that for all α, r, DiN(α, r) ≥
Ri
N(α, r). Consider now r∗ ∈ arg maxr∈MN+1 DiN(α, r). By definition of DiN , there exist T, T ′

such that

DiN(α, r) =
T∑

t=T ′

log(1 + rit)− log(1 + rαt ).

Consider a sequence r̂ such that

r̂t =

{
r∗t if t ≤ T

(r0, r0) if t > T.

By construction we have that

DiN(α, r∗) ≤ Ri
N(α, r̂).
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Altogether, this implies that maxrDiN(α, r) = maxrRi
N(α, r).

Point (ii) follows from the observation that

Ri
T+1 = max

T ′≤T+2

T+1∑
t=T ′

log(1 + rit)− log(1 + rαt )

= max

{
0, log(1 + riT+1)− log(1 + rαT+1) + max

T ′≤T+1

T∑
t=T ′

log(1 + rit)− log(1 + rαt )

}
=
[
log(1 + riT+1)− log(1 + rαT+1) +Ri

T

]+
.

Proof of Proposition 4: Point (i) follows from the discussion preceding Proposition 4.

Point (ii) follows from the fact that if α solves minα∈Amaxr∈MN+1 λiDiN(α), then it must

be that λ0D0

N(α) = λ1D1

N(α). Indeed, imagine we had λ0D0

N(α) > λ1D1

N(α). For η > 0

consider the strategy α′ such that in period 0, a share η of wealth is invested in asset 0 and

is not rebalanced, while a share 1 − η is invested according to α. For η > 0 small enough,

α′ is such that λ0D0

N(α) > max{λ0D0

N(α′), λ1D1

N(α′)}, contradicting the optimality of α.

Together, with point (i), this implies that

λ0D0

N(α) = λ1D1

N(α) = Wλ(z0).

Proof of Corollary 2: Given any T ≤ N , regret Ri
T , and continuation sequence rT :N ≡

(rt)t∈{T+1,··· ,N}, one can compute regret Ri
N , denoted more explicitly by Ri

N(α, rT :N ,Ri
T )

using the recursion equation of Lemma 2 (ii). Let us show by induction that for any T

V i
α(xiT ) = max

rT :N
Ri
N(α, rT :N ,Ri

T ).

The result is obviously true for T = N . Assume that it is true for T ≤ N , and let us show
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it holds for T − 1:

V i
α(xiT−1) = max

rT−1∈M
V i
α(xiT )

= max
rT−1∈M

max
rT :N
Ri
N(α, rT :N ,Ri

T ).

= max
rT−1:N

Ri
N(α, rT−1:N ,Ri

T−1).

Corollary 2 follows from applying this result to xi0.

B.4 Proofs for Section 5

Proof of Proposition 5: The result is immediate. For any public history ht = (rs)s∈{0,··· ,t−1}

there exists a marginal distribution µt|ht of rt such that

αλ(ht) ∈ arg max
a∈A

Eµt|ht [log(1 + rat )] .

The prior µ with conditional marginals (µt|ht)t∈{0,··· ,N}
ht∈H

admits αλ as Bayesian optimal, ex-

pected utility maximizing, policy.

Proof of Lemma 3: For any two allocations a0 and a1 in period T , denote by α0 (resp.

α1) the allocation strategies with initial allocation a0 (resp. a1) and continuation allocation

strategy αλ. For any ρ ∈ (0, 1) define αρ = (1 − ρ)α0 + ρα1 and aρ = (1 − ρ)a0 + ρa1. We

have that

U(zT , a, r) = max
r∈{r}×MN−T

max
T ′∈{T,··· ,N}

max
i∈{0,1}

λi

[
1T ′=TRi

T +
N∑
t=T ′

log(1 + rit)− log(1 + rα
ρ

t )

]

Concavity of log implies that for all i ∈ {0, 1} and all r ∈ {r} ×MN−T ,

∀T ′ ≤ N,

N∑
t=T ′

log(1 + rit)− log(1 + rα
ρ

t ) ≤ρ
N∑
t=T ′

log(1 + rit)− log(1 + rα
1

t )

+ (1− ρ)
T∑

t=T ′

log(1 + rit)− log(1 + rα
0

t )
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This implies that

max
r∈{r}×MN−T

T ′∈{T,··· ,N}
i∈{0,1}

N∑
t=T ′

log(1 + rit)− log(1 + rα
ρ

t ) ≤ max
r∈{r}×MN−T

T ′∈{T,··· ,N}
i∈{0,1}

[
ρ

N∑
t=T ′

log(1 + rit)− log(1 + rα
1

t )

+ (1− ρ)
T∑

t=T ′

log(1 + rit)− log(1 + rα
0

t )

]

It follows that U(zT , a, r) is indeed convex in a.

Point (ii) follows directly from the Minimax theorem (see Luenberger, 1968). Note that

optimal allocation αλ(zT ) solves

min
a∈∆({0,1})

max
µ∈∆(M)

EµU(zt, a, r).

Denote by µλ(zt) a solution to

max
µ∈∆(M)

min
a∈∆({0,1})

EµU(zt, a, r).

Lemma 3 implies that EµU(zt, a, r) is convex in a and concave in µ. By the Minimax

theorem, this implies that (αλ(zt), µλ(zt)) is a mixed Nash equilibrium of the zero-sum game

with payoffs to the investor equal to −U(zt, a, r).

Let us now establish point (iii). Take as given drawdowns D0
A 6= D0

B as well as the

strategies αA and αB implementing the corresponding points on the frontier. Define αρ ≡
ραA+(1−ρ)αB. By convexity of mapping D0

(·), we obtain that D0
(αρ) ≤ ρD0

A+(1−ρ)D0
B.

Since γ is decreasing, this implies that

γ(ρD0
A + (1− ρ)D0

B) ≤γ(D0
(αρ)) ≤ D1

(αρ)

≤ρD0
(αA) + (1− ρ)D1

(αB) = ργ(D0
A) + (1− ρ)γ(D1

A).

This yields point (iii).

As a preliminary to Proposition 6, let us prove the following lemmas.

Lemma B.2. If λiRi − λ−iR−i /∈ (−λi(N − T )~i, λ−i(N − T )~−i), then WT (R0,R1) =

maxi∈{0,1}Ri and the optimal allocation is such that ai = 1λiRi≥λ−iR−i.

Proof of Lemma B.2: Since nature can guarantee RT = RT+1 by selecting returns r
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such that r0 = r1, it follows that for all T , WT (R0,R1) ≥ maxi∈{0,1} λiRi. The constant

allocation setting ai = 1 in every period ensures that WT (R0,R1) = maxi∈{0,1} λiRi. Hence,

constant allocation ai = 1 is an optimal continuation strategy. It is in fact uniquely optimal

since if ai 6= 1 nature can ensure that WT (R0,R1) > maxi∈{0,1} λiRi by selecting returns

r ∈ arg maxr∈M maxi∈{0,1}Ri + log(1 + ri)− log(1 + ra).

Lemma B.3. For all T ≤ N , i ∈ {0, 1}, whenever λiRi−λ−iR−i ∈ (−λi(N−T )~i, λ−i(N−
T )~−i), then

(i) WT (R0,R1) > WT+1(R0,R1);

(ii) WT (R0,R1) is strictly increasing in both R0 and R1;

(iii) any Nash equilibrium (a, µ) of the zero-sum game with payoffs −U(zt, a, r)

to the investor are such that a is in the interior of ∆({0, 1}), and µ puts positive

mass on both (0, r) and (0,−r).

Proof of Lemma B.3: The proof is by induction on T ≤ N . The discussion of Section 5.1

establishes the result for T = N . We now show that if the result holds for T + 1 ≤ N , it

must hold for T .

Let us first establish that under the induction hypothesis at T +1, the optimal allocation

at T is necessarily interior. The optimal allocation a∗ at T is a Nash equilibrium of the

zero-sum game with payoffs −U(zT , a, r). Let us show that we cannot have a1 ∈ {0, 1}.
Indeed, if we had a1 = 1, then nature’s payoff take the form WT+1([R0

T − log(1 + r)]+,R1
T ).

Since (by the induction hypothesis) WT+1 is strictly increasing in R0
T+1, the unique best

response by nature is to pick r1 = −r, inducing a best response a1 < 1 from the investor.

Hence a1 = 1 is not part of an equilibrium. A similar reasoning holds if a1 = 0. This implies

that the optimal policy must set a1 ∈ (0, 1).

We turn to point (i). Define HT = {RT s.t. λ1R1
T − λ0R0

T ∈ (−λ1(N − T )~1, λ0(N −
T )~0)}. Consider first the case where RT ∈ HT \ HT+1. By Lemma B.2, this implies that

WT+1(R0,R1) = maxi∈{0,1} λiRi. Since the optimal allocation is interior, by picking returns

r1 = −r or r1 = r nature can ensure that regrets are strictly greater than maxi∈{0,1}Ri
T .

This implies point (i).

Consider the case where RT ∈ HT+1 point (iii) of the induction hypothesis implies

that there exists µ∗ placing mass on both (0,−r) and (0,+r) such that WT+1(RT ) =
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mina Eµ∗WT+1(RT+1). Since µ places positive weight on both (0,−r) and (0,+r), it fol-

lows that for all a ∈ ∆({0, 1}), with positive probability under µ, RT+1 ∈ HT+1. Hence,

using the Minimax theorem, we have that

WT (RT ) = max
µ̂∈∆(M)

min
a∈∆({0,1})

Eµ̂WT+1(RT+1)

≥ min
a∈∆({0,1})

Eµ∗WT+1(RT+1)

> min
a∈∆({0,1})

Eµ∗WT+2(RT+1) = WT+1(RT )

where the last strict inequality follows from induction hypothesis (i) for T + 1. This proves

point (i) for T .

An implication on point (i) is that whenever RT ∈ HT , nature’s equilibrium strategy

cannot put weight on returns (0, 0) since for this value of r, U(RT , a, r) = WT+1(RT ).

Together with the fact that a is interior, this implies point (iii).

We now turn to point (ii). Since the optimal allocation a is interior, nature’s equilibrium

strategy must be mixing between actions (0,−r) and (0, r). We have that

WT (RT ) = min
a∈∆({0,1}

max
µ∈∆(M)

Eµ [WT+1(R+ T + 1)] .

For all realizations of equilibrium distribution µ∗, WT+1(RT+1) is weakly increasing in R1.

Furthermore, it follows from the induction hypothesis that with strictly positive probability

under µ∗, realized returns are such that WT+1(RT+1) is strictly increasing in R1. This im-

plies that WT (RT ) is strictly increasing in R1. A similar reasoning implies that WT (RT ) is

strictly increasing in R0. This concludes the proof of Lemma B.3.

Proof of Proposition 6: Proposition 6 follows directly from Lemmas B.2 and B.3.

Proof of Corollary 3: The result follows from Propositions 3 and 6 (ii). Proposition 3

implies that there exist h > 0 such that for all N and all sequences of returns r,

|λ1R1
N(αλ,N , r)− λ0R0

N(αλ,N , r)| ≤ h
√
N.

This and Proposition 6 implies that allocation αN,λ(ht) is a corner allocation for at most

O(
√
N) periods.
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Proof of Corollary 4: The fact that Eµ[
r1t

1+r1t
|ht] > ε implies that Eµ[log(1 + r1

t )− log(1 +

a1r
1
t )] > ε(1− a1). Assume that there exists ν > 0 such that

prob

(
lim inf

N

1

T2 − T1

T2∑
t=T1

α1
λ,N(ht) < 1− ν

)
> ν.

This implies that

lim sup Eµ

(
1

T2 − T1

T2∑
t=T1

log(1 + r1
t )− log(1 + r

αλ,N
t )

)

≥ lim sup εEµ

[
1

T2 − T1

T2∑
t=T1

1− α1
λ,N(ht)

]
≥ εν2,

which contradicts the fact that D1

N(αλ,N) = O(
√
N).

B.5 Proofs for Section 6

Proof of Proposition 7: Point (i) and (iii) are immediate. Point (ii) is proven by exhibit-

ing an asset allocation strategy that guarantees regrets Ri,σ
N of order O(

√
N). The main step

is to prove the approachability condition required in Blackwell (1956).

Consider some asset i ∈ I. For any ρ ∈ [0, 1], let ψ(ρ) ∈ [ai, ai] denote a solution to

equation

ai = ρai,+ + (1− ρ)ai,−

= ρmin{ai + ∆, ai}+ (1− ρ) max{ai −∆, ai}

Elementary algebra shows that: existence is immediate; unicity holds whenever ρ 6= 1
2
; ψ is

increasing in ρ.

Regets Ri,σ
T satisfy

Ri,σ
T+1 =[Ri,σ

T + gσ(aiT+1, r
i
T+1, r

¬i
T+1)]+

=[Ri,σ
T + log(1 + ai,σT+1r

i
T+1 + (1− ai,σT+1)r0 − r¬iT+1)

− log(1 + aiT+1r
i
T+1 + (1− aiT+1)r0 − r¬iT+1)]+.
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By concavity of the log, it follows from simple algebra that setting

aiT+1 = ψ

(
Ri,+
T

Ri,−
T +Ri,+

T

)
(30)

ensures that the following approachability condition holds

∀riT+1,∀r¬iT+1, Ri,+
T × g+(aiT+1, r

i
T+1, r

¬i
T+1) +Ri,−

T × g−(aiT+1, r
i
T+1, r

¬i
T+1) ≤ 0.

It follows from Blackwell (1956) (see also Foster and Vohra (1999) for a modern treatment)

that the policy defined by (30) ensures regrets of order
√
N .

Proof of Corollary 5: Condition (21) implies that for all i ∈ I, there exists ν > 0 and

σ ∈ {+1,−1} such that

νσ(aσ,i − ai) ≤ Eµ[gσ(ai, ri, r¬i)]. (31)

Without loss of generality, we can consider the case where σi = +1. This implies that with

probability approaching 1 for N large, the allocations (ait)t∈{T1,··· ,T2} generated by prior-free

strategy α∗,i satisfy

ν

2

T2∑
t=T1

a+,i
t − ait ≤

T2∑
t=T1

g+(ait, r
i
t, r
¬i
t ) = O(

√
N). (32)

Since a+,i = max{ai, ai + ∆}, (32) implies that

T2∑
t=T1

a+,i
t − ait =

T2∑
t=T1

(ai − ait)1ai<ai+∆ + ∆

T2∑
t=T1

1ai>ai+∆ = O(
√
N).

This implies that
∑T2

t=T1
1ai>ai+∆ = O(

√
N) and therefore that

∑T2
t=T1

ai − ait = O(
√
N).

Since T2 − T1 is of order N , this implies that

µ-a.s.,
1

T2 − T1

T2∑
t=T1

ait → ai.

Since a similar argument holds for σi = −1, this implies Corollary 5.
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