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Abstract

We document a novel bidding pattern observed in procurement auctions from
Japan: winning bids tend to be isolated, and there is a missing mass of close losing
bids. This pattern is suspicious in the following sense: its extreme forms are incon-
sistent with competitive behavior under arbitrary information structures. Building on
this observation, we develop systematic tests of competitive behavior in procurement
auctions that allow for general information structures as well as non-stationary unob-
served heterogeneity. We provide an empirical exploration of our tests, and show they
can help identify other suspicious patterns in the data.
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1 Introduction

One of the key functions of antitrust authorities is to detect and punish collusive agreements.

Although concrete evidence is required for successful prosecution, screening devices that flag

suspicious firms help regulators identify such collusive agreements, and encourage members

of existing cartels to apply for leniency programs.1 Correspondingly, an active research

agenda has sought to build methods to detect collusion using naturally occurring market

data (e.g. Porter, 1983, Porter and Zona, 1993, 1999, Ellison, 1994, Bajari and Ye, 2003,

Harrington, 2008). This paper seeks to make progress on this research agenda by developing

systematic tests of competitive behavior in procurement auctions under weak assumptions

on the environment.

We begin by documenting a suspicious bidding pattern observed in first-price sealed-bid

procurement auctions in Japan: the density of the bid distribution just above the winning

bid is very low; there is a missing mass of close losing bids. These missing bids are related to

bidding patterns observed among collusive firms in Hungary (Tóth et al., 2014), Switzerland

(Imhof et al., 2018), and Canada (Clark et al., 2020). We establish that extreme forms of

this pattern are inconsistent with competitive behavior under a general class of asymmetric

information structures. Indeed, when winning bids are isolated, bidders can profitably de-

viate by increasing their bids. Expanding on this observation, we propose general tests of

competitive behavior in procurement auctions that are robust, in the sense of holding under

weak assumptions on the information structure and arbitrary unobserved heterogeneity.

Our data come from two sets of public works procurement auctions in Japan. The first

dataset contains information on roughly 7,000 city-level auctions held between 2004 and

2018 by 14 different municipalities in Ibaraki prefecture and the Tohoku region of Japan.

1A growing number of agencies are adopting algorithm-based screens that analyze bidding data from
public procurement auctions to flag suspicious behavior including those in Brazil, South Korea, Switzerland,
the United Kingdom, and most recently, the United States. For example, the U.S. Department of Justice
announced the formation of a procurement collusion strike force whose goals include bolstering “data ana-
lytics employment to identify signs of potential anticompetitive, criminal collusion.” (Announcement of the
Antitrust Division’s Procurement Collusion Strike Force, November 22, 2019.)
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The second dataset, analyzed by Kawai and Nakabayashi (2018), contains data on approxi-

mately 78,000 national-level auctions held between 2001 and 2006 by the Ministry of Land,

Infrastructure and Transportation. We are interested in the distribution of bidders’ margin

of victory and defeat. For every (bidder, auction) pair, we compute ∆ ≡ own bid−min(other bids)
reserve

,

the difference between the bidder’s own bid and the most competitive bid among this bid-

der’s opponents, divided by the reserve price. When ∆ < 0, the bidder won the auction.

When ∆ > 0 the bidder lost. For both the municipal and national datasets, we document a

missing mass in the distribution of ∆ around ∆ = 0. Our results clarify the sense in which

this missing mass of close losing bids is suspicious, and help us identify other patterns in the

data that are inconsistent with competition.

We analyze our data within a fairly general framework. A group of firms repeatedly

participates in first-price procurement auctions. Players can observe arbitrary signals about

one another, and bidders’ costs and types can be correlated within and across periods.

Importantly, we rule out dynamic considerations such as capacity constraints or learning by

doing: we assume that current auction outcomes don’t affect firms’ future costs. Behavior

is called competitive if it is stage-game optimal under the players’ information.

Our first set of results establishes that, in its more extreme forms, the pattern of missing

bids is not consistent with competitive behavior under any information structure. We exploit

the fact that in any competitive equilibrium, firms must not find it profitable in expectation to

increase their bids. This incentive constraint implies that with high probability the elasticity

of firms’ sample residual demand (i.e., the empirical probability of winning an auction at

any given bid) must be bounded above by -1. This condition is not satisfied in portions of

our data: because winning bids are isolated, the elasticity of sample residual demand is close

to zero.

Our second set of results generalizes this test. In particular, we show how to exploit

equilibrium conditions to derive bounds on the extent of non-competitive behavior in our

data. The bounds that we propose allow for very general information structures, contrasting
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with existing approaches that rely on specific assumptions such as independent private values

(e.g. Bajari and Ye, 2003). As we show in our companion paper Ortner et al. (2020),

antitrust policy based on tests that are robust to information structure cannot be exploited

by cartels to enhance collusion. This addresses the concern articulated by Cyrenne (1999)

and Harrington (2004) that data driven antitrust policies may end up facilitating collusion

by providing cartel members a more effective threat point.

Our third set of results takes our tests to the data. We delineate how different moment

conditions (i.e. different deviations) uncover different non-competitive patterns. While miss-

ing bids suggest that a small increase in bids is attractive, we show that a moderate drop

in bids (on the order of 2%) may also be attractive to bidders: it yields large increases in

demand. In our data, downward deviations tend to be more informative about the competi-

tiveness of auctions than upward deviations. In addition, upward and downward deviations

are more informative together than separately. Finally, although failing our tests does not

necessarily imply bidder collusion, we show that the outcomes of our tests are consistent

with other proxy evidence for competitiveness and collusion. Bids that are high relative to

the reserve price are more likely to fail our tests than bids that are low. Bids placed before

an industry is investigated for collusion are more likely to fail our tests than bids placed

after it is investigated for collusion. Altogether this suggests that, although our tests are

conservative, they still have bite in practice.

Our paper relates primarily to the literature on cartel detection in auctions.2 Porter and

Zona (1993, 1999) show that suspected cartel and non-cartel members bid in statistically

different ways. Bajari and Ye (2003) design a test of collusion based on excess correlation

across bids. Conley and Decarolis (2016) propose a test of collusion in average-price auctions

exploiting cartel members’ incentives to coordinate bids. Chassang and Ortner (2019) pro-

pose a test of collusion based on changes in behavior around changes in the auction design.

Kawai and Nakabayashi (2018) focus on auctions with re-bidding, and exploit correlation

2See Harrington (2008) for a recent survey.
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in bids across stages to detect collusion.3 Marmer et al. (2016) and Schurter (2017) design

tests of collusion for English auctions and for first-price sealed bid auctions focusing on par-

tial cartels. The tests that we propose relax assumptions imposed in previous work such as

symmetry, independence and private values (at the cost of reduced power), and can be used

to detect both all-inclusive cartels and partial cartels.

More broadly, our paper relates to prior work that seeks to test for competitive behavior

in other (non auction) markets. Sullivan (1985) and Ashenfelter and Sullivan (1987) propose

tests of whether firms behave as a perfect cartel, and apply these tests to the cigarette

industry. Bresnahan (1987) and Nevo (2001) test for competition in the automobile and

ready-to-eat cereal industries.4

Finally, our tests are also related to revealed preference tests seeking to quantify violations

of choice theoretic axioms.5 Afriat (1967), Varian (1990), and Echenique et al. (2011) propose

tests to quantify the extent to which a given consumption dataset violates GARP. More

closely related, Carvajal et al. (2013) propose a revealed preference test of the Cournot

model.

2 Motivating Facts

Our first dataset consists of roughly 7,100 auctions for public works contracts held between

2004 and 2018 by municipalities located in the Tohoku region and Ibaraki prefecture of

Japan. The auctions are sealed-bid first-price auctions with a publicly announced reserve

price.6 The top panel of Table 1 reports summary statistics. The mean reserve price is 23.2

3Kawai and Nakabayashi (2018) study the subset of auctions with rebidding while the current analysis
applies to all auctions.

4Also related are Porter (1983) and Ellison (1994), who exploit dynamic patterns of play predicted by the
theory of repeated games (Green and Porter, 1984, Rotemberg and Saloner, 1986) to test for tacit collusion.

5See Chambers and Echenique (2016) for a recent review of the literature on revealed preferences.
6Our city-level dataset combines two datasets. The first dataset contains auctions held by municipalities

in the Tohoku region in Japan. For the current analysis, we restrict attention to municipalities using a
sealed-bid first-price auction with a public reserve price. The second dataset, studied in Chassang and
Ortner (2019), contains auctions held by municipalities in the prefecture of Ibaraki. For the current analysis,
we use data from the city of Tsuchiura during 2007-2009, when the city was using sealed-bid first-price
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million yen, or about 230,000 USD, and the mean winning bid is 21.5 million yen. The mean

number of bidders is 7.4. On average, a bidder in the dataset participates in 23.3 auctions

and wins 3.1 auctions.

For any given firm i participating in auction a with reserve price r, we denote by bi,a

the bid of firm i in auction a, and by b−i,a the profile of bids by bidders other than i. We

investigate the distribution of

∆i,a =
bi,a − ∧b−i,a

r

aggregated over firms i, and auctions a, where ∧b−i,a denotes the minimum bid from bidders

other than i. The value ∆i,a represents the margin by which bidder i wins or loses auction

a. If ∆i,a < 0 the bidder won, if ∆i,a > 0 she lost. Figure 1(a) plots the histogram and the

density estimate of bid differences ∆ aggregating over all firms and auctions in the sample.

The mass of missing bids around 0 is clearly noticeable.

(a) city auctions (b) national auctions

Figure 1: Distribution of bid-differences ∆ over (bidder, auction) pairs.

The dotted curves correspond to local (6th order) polynomial density estimates with bandwidth set to 0.0075.

Our second dataset, studied in Kawai and Nakabayashi (2018), consists of roughly 78,000

auctions for construction projects held between 2001 and 2006 by the Ministry of Land,

auctions with a public reserve price.
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Infrastructure and Transportation in Japan (the Ministry). The auctions are sealed-bid

first-price auctions with a secret reserve price. The average reserve price is 105.1 million

yen, or about 1 million USD and the mean lowest bid is 101.9 million yen, which is 97.0%

of the reserve price. Because the reserve price is secret, the lowest bid may be higher than

the reserve price in which case there is rebidding. In that event, the reserve price remains

secret to the bidders, but the lowest bid from the initial round is announced. There are at

most two rounds of rebidding. If none of the bids are below the reserve price at the end of

the second round of rebidding, the lowest bidder from the last round enters into a bilateral

negotiation with the buyer. The auction concludes in the initial round of bidding about

75% of the time. The auction concludes after one round of rebidding in more than 97% of

auctions and concludes after two rounds of rebidding in more than 99% of auctions. The

mean number of participants is 9.9. For both datasets, all bids become public information

after the auction. Figure 1(b) illustrates the distribution of bid-differences ∆ for national

auctions, where ∆ is defined using first-round bids. The missing mass of bids around ∆ = 0

is stark.

We point out another important (though less visually striking) feature of the densities

plotted in Figure 1: the tails of the distribution taper off rapidly. This implies that much

of the mass of ∆ is concentrated within a relatively small interval around 0. For example,

∆ lies between 0 and 0.02 for 50.0% of the losing bids in the city auctions and 25.6% of the

losing bids in the national auctions. This implies that a drop in bids of 2% increases demand

considerably (by 349% and 307%, respectively).7 Hence, while the missing bid pattern in

Figure 1 suggests small increases in bids are profitable, the relatively large concentration of

mass around ∆ = 0 suggests that a small reduction in bids is also attractive (unless firms’

profit margins are very small).

7Figure OC.1 (Online Appendix OC.1) illustrates this point by plotting firms’ sample residual demand
for our two datasets.
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Mean S.D. N

City Auctions
By Auctions

reserve price (mil. Yen) 23.189 91.32 7,111
lowest bid (mil. Yen) 21.500 85.10 7,111
lowest bid / reserve 0.938 0.06 7,111
#bidders 7.425 3.77 7,111

By Bidders
participation 23.29 43.58 2,267
number of times lowest bidder 3.14 6.22 2,267

National Auctions
By Auctions

reserve price (mil. Yen) 105.121 259.58 78,272
lowest initial bid (mil. Yen) 101.909 252.30 78,272
winning bid (mil. Yen) 100.338 252.30 78,272
lowest bid / reserve 0.970 0.10 78,272
winning bid / reserve 0.946 0.10 78,272
ends in one round of bidding 0.752 0.43 78,272
ends after one rebidding 0.971 0.17 78,272
ends after two rebidding 0.996 0.06 78,272
#bidders 9.883 2.27 78,272

By Bidders
participation 26.40 94.61 29,670
number of times lowest bidder 2.64 10.57 29,670

Table 1: Sample Statistics – City and National Level Data

Correlation with indicators of collusion. Our analysis studies the extent to which

the bidding patterns in Figure 1 are inconsistent with competitive behavior under arbitrary

information structures. While non-competitive behavior need not be collusive, we note that

missing bids are in fact correlated with plausible indicators of collusion.

Since the goal of collusion is to elevate prices, we would expect to see suspicious bidding

patterns in auctions with high bids. Figure 2 breaks down the auctions in Figure 1(b) by

bid level: the figure plots the distribution of ∆i,a for normalized bids
bi,a
r

below .8 (Panel
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(a)) and above .9 (Panel (b)). The mass of missing bids is considerably reduced in Panel

(a). The tails of the distribution taper off more gradually in Panel (a).

(a) Bids below 80% of reserve price (b) Bids above 90% of reserve price

Figure 2: Distribution of bid-difference ∆ – national data.

The dotted curves correspond to local (6th order) polynomial density estimates with bandwidth set to 0.0075.

Figure 3 plots the distribution of ∆i,a for participants of auctions held by the Ministry

that were implicated by the Japanese Fair Trade Commission (JFTC). The JFTC implicated

four bidding rings participating in auctions in our data: (i) firms installing electric traffic

signs (Electric); (ii) builders of bridge upper structures (Bridge); (iii) pre-stressed concrete

providers (PSC); and (iv) floodgate builders (Flood). The left panels in Figure 3 plot the

distribution of ∆ for auctions that were run before the JFTC started its investigation, and

the right panels plot the distribution in the after period. In all cases except case (iii), the

pattern of missing bids disappears after the JFTC launched its investigation. Interestingly,

firms in case (iii) initially denied the charges against them (unlike firms in the other three

cases), and seem to have continued colluding for some time (see Kawai and Nakabayashi

(2018) for a more detailed account of these collusion cases).

What does not explain this pattern. We end this section by arguing that missing bids

are not explained by either the granularity of bids, or ex post renegotiation.
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Figure 3: Distribution of bid-difference ∆, before and after JFTC investigation.

Figures 2 and 3 show that the pattern of missing bids in Figure 1 is not a mechanical

consequence of the granularity of bids. If this was the case, we should see similar patterns
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across all bid levels, or before and after the JFTC investigations. In addition, Figure OC.2 in

Online Appendix OC.1 plots the distribution of placebo statistic ∆2, defined as the difference

between bids and the most competitive other bid in bidding data from which each auction’s

lowest bid is excluded. The figure shows that the distribution of ∆2 has no corresponding

missing mass at 0.

Renegotiation could potentially account for missing bids by making apparent incentive

compatibility issues irrelevant. However, in the auctions we study, contracts signed between

the awarder and the awardee include a renegotiation provision which stipulates that renego-

tiated prices should be anchored to the initial bid. Specifically, if the project is deemed to

require additional work, the government engineers estimate the costs associated with extra

work. The firm is then paid initial bid
reserve price

× costs of extra work. This implies that a missing

mass of ∆ makes a small increase in bids profitable even taking into account the possibility

of renegotiation. We provide further evidence on this point in Online Appendix OC.1: the

missing bid pattern is present even in a subset of auctions for which we can ascertain that

no price renegotiation took place.

3 Framework

3.1 The Stage Game

We consider a dynamic setting in which, at each period t ∈ N, a buyer needs to procure a

single project. In the main body of the paper, we assume that the auction format is a sealed-

bid first-price auction with a public reserve price r, which we normalize to r = 1. Online

Appendix OA extends the analysis to auctions with secret reserve prices and re-bidding (as

in the national data).

In each period t, a state θt ∈ Θ captures all relevant past information about the environ-

ment. Some elements of θt may be observed by the bidders at the time of bidding, but other
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elements may not be.8 All elements of θt are revealed to the bidders by the end of period

t. Importantly, θt need not be observed by the econometrician. We assume that θt is an

exogenous Markov chain (i.e. given any event E anterior to time t, θt|{θt−1, E} ∼ θt|{θt−1}),

but do not assume that there are finitely many states, that the chain is irreducible, or er-

godic. The important assumption here is that by the end of each period t, bidders observe

a sufficient statistic θt of future environments. Since θt evolves as an exogenous Markov

process, we rule out intertemporal linkages between actions and payoffs.9 In practice, state

θt may include the vector of distances between the project site and each of the firms, the

vector of inputs specified in the construction plan, or the vector of current input prices. It

may also include the current calendar date if there is seasonality in firms’ costs. Lastly, θt

may also include variables that are unknown to the bidders at the time of bidding, such as

underground soil conditions. We do not assume that θt is observed by the econometrician.

In each period t ∈ N, a set N̂t ⊂ N of bidders is able to participate in the auction, where

N is the overall set of bidders. We think of this set of participating firms as those eligible

to produce in the current period.10 The distribution of the set of eligible bidders N̂t can

vary over time, but depends only on state θt−1. Participants discount future payoffs using a

common discount factor δ < 1.

Costs. Costs of production for eligible bidders i ∈ N̂t are denoted by ct = (ci,t)i∈N̂t . The

bidder may or may not know its own costs at the time of bidding. The profile of costs

ct = (ci,t)i∈N̂t may exhibit correlation across players and over time, but its distribution

depends only on state θt. Because θt need not be finite-valued or ergodic, the distribution of

8As we discuss below, we assume that each bidder receives a (possibly multi-dimensional) signal zi,t prior
to bidding. Components of θt that are observed to the bidder will be included in zi,t. For components of θt
that are not observed, the bidder will form beliefs over their values based on the signal.

9This rules out dynamic considerations such as capacity constraints or learning by doing. In our com-
panion paper, Kawai et al. (2020), we propose tests of competition that hold in the presence of intertemporal
links between bids and costs.

10For simplicity, we take the set of participating bidders as exogenous. In practice, the set of participants
may well be endogenous (see the Online Appendix of Chassang and Ortner (2019) for a treatment of endoge-
nous participation by cartel members). This does not affect our analysis: bids would still have to satisfy the
optimality conditions we rely on for inference.
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costs can be arbitrarily different at every t. For example, if time t is included as part of state

θt, then the distribution of costs can be different for every auction. All costs are assumed to

be positive.

Information. In each period t, bidder i gets a signal zi,t prior to bidding. The distribution

of the profile of signals (zi,t)i∈N̂t depends only on (θt, (ci,t)i∈N̂t). Signals zi,t can take arbitrary

values, including vectors in Rn. Signals zi,t may reveal information about current state θt,

bidder i’s own costs ci,t, or the costs cj,t of other players. This allows our model to nest

many informational environments, including private and common values, correlated values,

asymmetric bidders and asymmetric information.11 Since θt may not be finite valued or

ergodic, our framework allows the distribution of signals (zi,t)i∈N̂t to be different in every

period t.

Bids and payoffs. Each bidder i ∈ N̂t submits a bid bi,t. Profiles of bids are denoted by

bt = (bi,t)i∈N̂t . We let b−i,t ≡ (bj,t)j 6=i denote bids from firms other than firm i, and define

∧b−i,t ≡ minj 6=i bj,t to be the lowest bid among i’s competitors at time t. The procurement

contract is allocated to the bidder submitting the lowest bid, at a price equal to her bid.

Ties are broken randomly. Bids bt are publicly observed at the end of the auction.12

In period t, bidder i ∈ N̂t obtains profits

πi,t = xi,t × (bi,t − ci,t),

where xi,t ∈ [0, 1] is the probability with which i wins the auction at time t.

11For instance, our model encompasses the affiliated values model, with the distribution of costs and
signals allowed to depend on state θt.

12Bids are publicly reported in the auctions we study. The assumption that bidders (rather than just the
econometrician) observe bids can be relaxed. However, echoing Fershtman and Pakes (2012), this makes it
more plausible that bidding behavior approaches equilibrium and satisfies the weak optimality conditions
used in our identification strategy.
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3.2 Solution Concepts

A public history h0
t in period t takes the form h0

t = (θs−1,bs−1)s≤t. We let H0 denote the set

of all public histories. Our solution concept is perfect public Bayesian equilibrium (Athey

and Bagwell, 2008). Because state θt is revealed by the end of each period, past play conveys

no information about the private types of other players. As a result we do not need to specify

out-of-equilibrium beliefs. A perfect public Bayesian equilibrium consists only of a strategy

profile σ = (σi)i∈N , such that for all i ∈ N , σi maps public histories and payoff-relevant

private signals to bids

σi : h0
t , zi,t 7→ bi,t.

Because our framework doesn’t allow for intertemporal linkages between past actions and

future payoffs, we can identify the class of competitive equilibria with the class of Markov

perfect equilibria (Maskin and Tirole, 2001).

Definition 1 (competitive strategy). We say that σ is Markov perfect if and only if ∀i ∈ N

and ∀h0
t ∈ H0, σi(h

0
t , zi,t) depends only on (θt−1, zi,t).

We say that a strategy profile σ is a competitive equilibrium if it is a perfect public

Bayesian equilibrium in Markov perfect strategies.

In a competitive equilibrium, firms must be playing a stage-game Nash equilibrium in

every period; i.e. firms play a static best-reply to the actions of their opponents.

Competitive histories. Our datasets involve many firms, interacting over an extensive

timeframe. Realistically, an equilibrium may include periods in which (a subset of) firms

collude and periods in which firms compete: we allow for both full and partial cartels. This

leads us to define competitiveness at the history level.

Definition 2 (competitive histories). Fix a common knowledge profile of strategies σ and a

history hi,t = (h0
t , zi,t) of player i. We say that player i is competitive at history hi,t if play

at hi,t is stage-game optimal for firm i given the behavior of other firms σ−i.
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We build up to our main inference problem, described in Section 6, in two steps. First, we

show in Section 4 that even under general information structures, it is possible to use data to

place restrictions on bidders’ beliefs at the time of bidding. Second, we show in Section 5 that

competitive behavior has testable implications, even under general incomplete information:

the standard result that firms bid in the elastic part of the demand curve continues to hold for

averages of demand. The results from Section 4 and Section 5 can be combined to construct

a simple test of competition based on the idea that missing bids patterns are inconsistent

with competition. Section 6 expands on these insights to obtain a probabilistic upper bound

on the maximum share of histories consistent with competitive behavior.

4 Data-Driven Restrictions on Beliefs

Because we make few assumptions on the environment, it is not obvious that bidding data

can be used to test for competition. This section shows that as long as bidders play a perfect

public Bayesian equilibrium, we can still place probabilistic constraints on the players’ beliefs

about their probability of winning.13 We show that in equilibrium the difference between

realized demand (i.e., 1∧b−i,t>b, for different values of b) and bidders’ beliefs regarding de-

mand is a martingale. Versions of the central limit theorem applying to sums of martingale

increments imply that as the sample size grows, sample averages of demand must be close to

the historical average of bidders’ beliefs, even if those beliefs vary in a non-stationary way

across histories.

Fix a perfect public Bayesian equilibrium σ. For all histories hi,t = (h0
t , zi,t) and all bids

b′ ∈ [0, 1], player i’s residual demand at hi,t is

Di(b
′|hi,t) ≡ probσ(∧b−i,t > b′|hi,t).

13In this section, we do not assume that bidders play Markov perfect strategies. We only assume perfect
public Bayesian equilibrium. Weaker solution concepts that do not require common knowledge of equilibrium,
such as no-regret play (Hart and Mas-Colell, 2000) would lead to similar results.
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In words, bidder i’s residual demand at history hi,t represents the bidders’ beliefs regarding

the probability of winning auction t for each possible bid b′ she may place. Note that the

conditioning variable hi,t in the expression includes the bidder’s signal zi,t on which we have

made very few assumptions. In particular, the distribution from which the signals zi,t are

drawn can be different for each period t unlike in the conditional i.i.d. setting used in previous

work.14 Indeed, bidders’ beliefs can depend on public information and private signals that are

unobserved to the econometrician. Still, it is possible to consistently estimate appropriately

constructed averages of beliefs.

Take as given a finite set of histories H, and a scalar ρ ∈ (−1,∞). We denote by D(ρ|H)

the average residual demand for histories in H and by D̂(ρ|H) its sample equivalent:

D(ρ|H) ≡ 1

|H|
∑
hi,t∈H

Di((1 + ρ)bi,t|hi,t), (1)

D̂(ρ|H) ≡ 1

|H|
∑
hi,t∈H

1∧b−i,t>(1+ρ)bi,t (2)

where |H| denotes the cardinality of set H.

We now provide conditions on the set of histories H under which expression (2) consis-

tently estimates (1).

Definition 3. We say that a set of histories H is adapted to the players’ information if and

only if the event hi,t ∈ H is measurable with respect to player i’s information at time t, prior

to bidding.

A subset H can be thought of as a selection of histories that satisfy certain criteria defined

by the analyst. Definition 3 states that H is adapted if it is possible to check whether hi,t

satisfies the criteria needed for inclusion in H using only information available to bidder i

at time t, prior to bidding.

14Note that in conditional i.i.d. environments with no unobserved heterogeneity, Di(b
′|hi,t) is consistently

estimated by the empirical distribution of ∧b−i,t conditional on observables. In our setting, we cannot
consistently estimate demand Di(b

′|hi,t) at each hi,t. We will only be able to obtain consistent estimates for
averages of demand.
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Consider, for example, taking H to be the entire set of histories for a specific industry

or location. The criteria for inclusion is that a particular history is for a specific industry

or location. In this case, H is adapted because a bidder knows at the time of auction t that

auction t is for a given industry or location. Hence, we do not need any information that

the bidder does not know at the time of bidding to determine whether or not to include any

such history in H.

Similarly, the set of histories in which a bidder bids a particular value is adapted since

the bidder knows how she bids. In contrast, the set of histories in which a specific bidder

wins the auction, or the set of histories in which the winning bid is equal to some value are

not adapted.15

It is necessary for us to focus on adapted sets of histories to link realized demand and

beliefs regarding demand (and payoffs). When we select a subset of histories H for data

analysis, we are effectively evaluating outcomes under the conditioning event that hi,t ∈ H.

When this event is in the information set of bidders at the time of bidding, then even condi-

tional on this event, the differences between the bidders’ beliefs and realizations of demand

are zero, in expectation. This allows us to link realized outcomes to bidders’ expectations,

and obtain consistent estimates of the bidders’ beliefs regarding demand and payoffs using

realized data. This link disappears if we focus on a set of histories that is not adapted: the

realized outcomes may be systematically different from the bidder’s expectation at the time

of bidding. For instance, if we focus on the set of histories such that a given bidder wins,

then the bidder’s realized demand under this conditioning event is 1, whereas the bidder’s

expected demand at the time of bidding will likely have been strictly below 1.

The notion of adpatedness formalizes the conditions on the sample selection rule such

that sample averages consistently estimate bidder beliefs without introducing selection bias.

In our empirical application, we take the set H to be histories in which the bids are above

or below a particular value, histories in which a given firm bids, etc. In each of these

15Note that the set of competitive histories itself is adapted (a bidder knows whether its bid is subjectively
competitive), though unobserved by the econometrician.

17



applications, the fact that we select the set of histories to be adapted guarantees that sample

demand consistently estimates averages of bidders’ beliefs.

Let Nmax denote an upper bound on the number of participants in any auction.16

Proposition 1. Consider an adapted set of histories H. Under any perfect public Bayesian

equilibrium σ, for any ν > 0,

prob(|D̂(ρ|H)−D(ρ|H)| ≤ ν) ≥ 1− 2 exp(−ν2|H|/2Nmax).

In particular, with probability 1, D̂(ρ|H)−D(ρ|H)→ 0 as |H| → ∞.

In equilibrium, the sample residual demand conditional on an adapted set of histories

converges to the historical average of bidders’ beliefs about demand. This implies a confi-

dence set [D̂(ρ|H)− ν, D̂(ρ|H) + ν] for the unobserved historical average of beliefs D(ρ|H).

We note that for simplicity, Proposition 1 uses non-asymptotic concentration results, and

symmetric two-sided confidence sets. We revisit these choices with power in mind in Section

6, after introducing our main inference problem.17

What drives Proposition 1 and when can it fail? The key step of the proof of

Proposition 1 is the observation that for all periods t, coefficients ρ, and bidding histories

(bs)s<t

Eσ[1∧b−i,t>(1+ρ)bi,t − probσ(∧b−i,t > (1 + ρ)bi,t|hi,t) | (bs)s<t, hi,t ∈ H] = 0. (3)

In words, bidders’ conditional beliefs about demand are correct in expectation, conditional

on past bidding information (bs)s<t and hi,t ∈ H, i.e., the fact that history hi,t satisfies

the criteria for inclusion in H. This implies that the difference |H| ×
(
D̂(ρ|H)−D(ρ|H)

)
16It is sufficient for Nmax to be a bound on the number of participants with histories in H in each auction.
17Among other things, we use tighter asymptotic bounds relying on the central limit theorem for sums of

martingale increments (Billingsley, 1995).
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evolves like a martingale as |H| grows. The Azuma-Hoeffding Inequality yields Proposition

1.

Condition (3) clarifies the role that public information about past bids, and adapted

histories play in the proof of Proposition 1. Note that bidders are required to have correct

beliefs in equilibrium, which implies

Eσ[1∧b−i,t>(1+ρ)bi,t − probσ(∧b−i,t > (1 + ρ)bi,t|hi,t) | hi,t] = 0.

If the history of bids (bs)s<t and the event {hi,t ∈ H} are both known to the bidder at

the time of bidding, the law of iterated expectations implies (3). Condition (3) would fail

if set H was not adapted (in that case, being included in our analysis carries information

unavailable to bidders at the time of bidding), or if bidders did not obtain feedback about

past outcomes (in that case, the history of bids (bs)s<t carries information unavailable to

bidders at the time of bidding). For instance, imagine that bidders other than i experience

a persistent drop in costs, so that they start bidding more aggressively than what firm i

expected in period t = 0. If firm i gets no feedback about either bids or auction outcomes, it

cannot update its beliefs and will systematically overestimate its demand at periods t > 0.

Similarly, if we used a non-adapted set H, such as the set of bidding histories where bidder

i wins, then (3) need not hold. Conditional on hi,t ∈ H, the bidder wins the auction with

probability 1, while bidder i’s belief at the time of bidding can be strictly less than 1.

Condition (3) also clarifies the role of rational expectations. Outside expectation Eσ and

inside probability probσ are indexed on the same stochastic process for bids generated by

equilibrium σ. If bidders expected others’ bids to be generated according to a strategy profile

σ′ while actual bids are generated by strategy profile σ 6= σ′, then (3) need not hold. We

note however that because past bids are observable, there exist prior-free solution concepts

based on no-regret learning rules (Hart and Mas-Colell, 2000) which guarantee that a version

of Proposition 1 would hold even without the rational expectations assumption.
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5 Missing Bids are Inconsistent with Competition

Our first main result shows that extreme forms of the pattern of bids illustrated in Figure 1

are inconsistent with competitive behavior.

Proposition 2. Let σ be a competitive equilibrium. Then,

∀hi,∀b′ > σi(hi) = b,
logDi(b

′|hi)− logDi(b|hi)
log b′ − log b

≤ −1, (4)

∀H,∀ρ > 0,
logD(ρ|H)− logD(0|H)

log(1 + ρ)
≤ −1. (5)

Under any competitive equilibrium, the elasticity of a bidder’s residual demand must be

less than -1 at every history, and the inequality aggregates to sets of histories. Proposition

2 extends to first-price auctions with secret reserve prices (see Online Appendix OA).

Proof. Consider a competitive equilibrium σ. Let

V (hi,t) ≡ Eσ

(∑
s≥t

δs−t(bi,s − ci,s)1bi,s<∧b−i,s
∣∣∣hi,t)

denote player i’s discounted expected payoff at history hi,t. Let b denote the bid that bidder

i places at history hi,t. Since b is an equilibrium bid, it must be that for all bids b′ > b,

Eσ
[
(b− ci,t)1∧b−i,t>b + δV (hi,t+1)

∣∣hi,t, bi,t = b
]
≥ Eσ

[
(b′ − ci,t)1∧b−i,t>b′ + δV (hi,t+1)

∣∣hi,t, bi,t = b′
]

Since σ is competitive, Eσ[V (hi,t+1)|hi,t, bi,t = b] = Eσ[V (hi,t+1)|hi,t, bi,t = b′]. Hence,

bDi(b|hi,t)− b′Di(b
′|hi,t) = Eσ

[
b1∧b−i,t>b − b′1∧b−i,t>b′

∣∣hi,t]
≥ Eσ

[
ci,t(1∧b−i,t>b − 1∧b−i,t>b′)

∣∣hi,t] ≥ 0, (6)

where the last inequality uses the assumption that ci,t ≥ 0. This implies that for all b′ > b,

bDi(b|hi,t) ≥ b′Di(b
′|hi,t) ⇐⇒ log b+ logDi(b|hi,t) ≥ log b′ + logDi(b

′|hi,t)
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⇐⇒ logDi(b
′|hi)− logDi(b|hi)

log b′ − log b
≤ −1.

Inequality (5) follows from a similar argument: for all hi,t, bi,t and ρ > 0, we have that

bi,tDi(bi,t|hi,t) ≥ (1 + ρ)bi,tDi((1 + ρ)bi,t|hi,t) ⇐⇒ Di(bi,t|hi,t) ≥ (1 + ρ)Di((1 + ρ)bi,t|hi,t)

Averaging over histories hi,t ∈ H, this implies that

D(0|H) ≥ (1 + ρ)D(ρ|H) ⇐⇒ logD(ρ|H)− logD(0|H)

log(1 + ρ)
≤ −1.

�

Proposition 2 extends the standard result that an oligopolistic competitor must price in

the elastic part of her residual demand curve to settings with arbitrary incomplete informa-

tion. Extreme forms of missing bids contradict Proposition 2: when the density of ∆ at 0 is

close to 0, the elasticity of demand is approximately zero.

As the proof highlights, this result exploits the fact that in procurement auctions, zero is

a natural lower bound for costs.18 In contrast, for auctions where bidders are purchasing a

good with positive value, there is no corresponding natural upper bound to valuations. One

would need to impose an upper bound on values to establish similar results.

Because Proposition 1 allows us to obtain estimates (and confidence sets) of D(0|H) and

D(ρ|H), Propositions 1 and 2 together yield a simple test of whether or not an adapted set

of histories H can be generated by a competitive equilibrium. This test holds under weak

restrictions on the environment, and hence strengthens existing approaches that make specific

assumptions such as symmetry, independent values and private values (see for instance Bajari

and Ye, 2003).

18Dynamic considerations such as learning by doing might imply that firms incur a negative net cost
of winning an auction. As we argue in Section 8, such dynamic considerations are unlikely to explain the
bidding patterns in our data.
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6 Bounding the Share of Competitive Histories

Proposition 2 derives testable implications of competition by using only the restriction that

costs are non-negative, and incentive compatibility conditions with respect to a single devi-

ation: an increase in bids. In this section we show how to obtain an upper bound on the

share of competitive histories (or equivalently a lower bound on the share of non-competitive

histories) consistent with observed data. For this we exploit the information content of both

upward and downward deviations, as well as possible restrictions on costs taking the form of

markup constraints. Proposition 2 can be viewed as a special case of the results we present

below. We also present asymptotic confidence sets that offer better power than Proposition

1. For simplicity, we assume that costs are private, and treat the case of common-value costs

in Online Appendix OB.

We believe that estimating the share of non-competitive histories, rather than just of-

fering a binary test of competition, is practically important. Cartels are often partial, and

regulators may want to prioritize more egregious cases. Measuring the prevalence of non-

competitive behavior can help regulators gauge the magnitude of potential cartels and target

investigations efficiently. This finer measure can also be used to track changes in cartel be-

havior over time. Finally, establishing that failures of non-competitive behavior are not rare

clarifies that bidders have plenty of opportunities to learn how to improve their bids. This

suggests that failures to optimize stage-game profits are not merely errors.

6.1 Deviations, Beliefs and Constraints

We begin by describing bidders’ beliefs and the constraints they must satisfy: incentive com-

patibility constraints for competitive histories, markup constraints imposed by the analyst,

and consistency with empirical demand (along the lines of Proposition 1).

Deviations and beliefs. Take as given scalars ρn ∈ (−1,∞) indexed by n ∈ M =

{−n, · · · , n} ⊂ Z, such that ρ0 = 0 and ρn < ρn′ for all n′ > n. Each scalar ρn parameterizes
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deviations (1 + ρn)bi,t from equilibrium bids bi,t.

For a history hi,t with equilibrium bid bi,t, deviation n ∈M is associated with an expected

demand dhi,t,n corresponding to bidder i’s belief that she would win the auction conditional

on history hi,t and bid (1 + ρn)bi,t:

dhi,t,n ≡ Di((1 + ρn)bhi,t |hi,t).

The profile of beliefs dhi,t ≡ (dhi,t,n)n∈M associated with deviationsM is a vector in [0, 1]M.

The set of feasible beliefs F is defined by F ≡ {d ∈ [0, 1]M s.t. ∀n < n′, dn ≥ dn′}.

Given a set of histories H, consider the associated collection of bidders’ beliefs (dh)h∈H

at those histories. It will be useful to consider the historical distribution µ∗ of feasible beliefs

d ∈ F induced by (dh)h∈H :

∀d ∈ F , µ∗(d) =
1

|H|
∑
h∈H

1dh=d.

Note that µ∗ is simply the (discrete) empirical measure defined on F which puts mass 1/|H|

on realized beliefs and mass 0 on all other points. Distribution µ∗ will be used to express

averages of the history of beliefs (dh)h∈H as expectations under distribution µ∗. For instance,

the average expected demand (D(ρn|H))n∈M at different deviations can be expressed as

Eµ∗ [d]. Indeed, for each n ∈M,

Eµ∗ [dn] ≡ 1

|H|
∑
hi,t∈H

dhi,t,n = D(ρn|H).

We note that distribution µ∗ is itself a random variable, depending on the realization of

bidders’ beliefs at the time of bidding. It is not observed by the econometrician.
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Markup constraints. We allow the analyst or econometrician to impose constraints on

costs ch taking the form of markup constraints:

bh
ch
∈ [1 +m, 1 +M ] (MKP)

where m ≥ 0 and M ∈ (m,+∞] are minimum and maximum markups.19 Constraint (MKP)

provides what we think is a transparent and convenient way for regulators to express intu-

itive subjective restrictions over the environment. Markups are simple familiar objects that

analysts may have direct intuition or information about. In contrast, Bayesian priors over

the underlying environment are high-dimensional objects for which little direct information

is available.20,21 We discuss the impact of (MKP) on empirical inference in Section 7.

Incentive compatibility constraints. When a history is competitive, the associated

beliefs must be consistent with stage-game best response (Definition 2). Hence, every com-

petitive history h ∈ H is associated with feasible beliefs (dh,n)n∈M ∈ F satisfying

∃ch ≥ 0 s.t. ∀n ∈M, [(1 + ρn)bh − ch] dh,n ≤ [(1 + ρ0)bh − ch]dh,0. (IC)

In words, beliefs can be rationalized as competitive if there exists a cost for which all devi-

ations are suboptimal given beliefs. Condition (IC) can be rexpressed more conveniently as

19In Chassang et al. (2019), we discuss plausibility constraints on the informativeness of signals.
20A partially sophisticated regulator may express probabilistic constraints without being willing to commit

to a full prior. For instance: “90% of the time, margins are greater than 5%”. Our existing framework lets
us test whether at least 90% of histories can be deemed competitive when markups are greater than 5%.
Alternatively, we could accommodate probabilistic restrictions by specifying that (MKP) must hold for a
minimum share of histories.

21Constraint (MKP) places restrictions on the set of environments that we allow for. For instance, it
rules out settings in which all bidders share the same publicly observed cost. We note, however, that the
minimum markup constraint in (MKP) can be microfounded with a model in which bidders incur a small bid
preparation cost κ > 0 if they participate in an auction. In such a model, bidder i will only participate at
time t and bid bi,t if Di(bi,t|hi,t)(bi,t − ci,t) ≥ κ. Since Di(bi,t|hi,t) ≤ 1, if bidder i chooses to participate, it

must be that
bi,t
ci,t
≥ 1 + κ

ci,t
≥ 1 + κ. Previous papers (e.g., Krasnokutskaya and Seim, 2011) have estimated

that bid preparation costs can be substantial, between 2.2% and 3.9% of the engineer’s cost estimate.
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follows: for all n ∈M,

[(1 + ρn)bh − ch] dh,n ≤ [(1 + ρ0)bh − ch]dh,0

⇐⇒ (1 + ρn)dh,n − (1 + ρ0)dh,0 ≤
ch
bh

(dh,n − dh,0). (7)

Since dh,n ≥ dh,n′ whenever n < n′, it follows that (7) is equivalent to22

(1 + ρn)dh,n − (1 + ρ0)dh,0
dh,n − dh,0

≤ ch
bh

if n < 0 (8)

(1 + ρn)dh,n − (1 + ρ0)dh,0
dh,n − dh,0

≥ ch
bh

if n > 0. (9)

Conditions (8) and (9) imply that there exists a cost ch satisfying (MKP) and (IC) if and

only if beliefs dh satisfy

max

{
1

1 +M
,
(1 + ρn)dh,n − (1 + ρ0)dh,0

dh,n − dh,0

∣∣∣n < 0

}
(IC-MKP)

≤ min

{
1

1 +m
,
(1 + ρn)dh,n − (1 + ρ0)dh,0

dh,n − dh,0

∣∣∣n > 0

}
.

Empirical consistency constraints. The third constraint that beliefs must satisfy is

that they must be consistent with data. Although we cannot pin down bidders’ beliefs at

individual histories, Proposition 1 implies probabilistic restrictions on average beliefs. With

probability close to 1 as the number of histories gets large, the average expected demand

at different deviations Eµ∗ [d] = (D(ρn|H))n∈M must be close to its empirical counterpart

D̂ ≡ (D̂(ρn|H))n∈M, if H is adapted.

Formally, for any α ∈ [0, 1] we take as given a confidence set Dα that covers the realized

average expected demand Eµ∗ [d] with probability α. Set Dα depends on realized bidding

data alone, and satisfies

probσ(Eµ∗ [d] ∈ Dα) ≥ α.

22In the event that dh,n − dh,0 = 0, we set the left-hand side of (8) equal to +∞, −∞ or 0, depending on
whether the numerator (1 + ρn)dh,n − (1 + ρ0)dh,0 is positive, negative or equal to zero.
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Proposition 1 implies that for any α > 0, there exist confidence sets Dα converging to the

singleton set given by the historical mean beliefs {Eµ∗ [d]} when the sample size gets suffi-

ciently large. For finite data however, the choice of confidence set Dα will impact inference:

some restrictions matter more than others to obtain upper bounds on the share of compet-

itive histories. We describe the confidence sets Dα used in our empirical implementation in

Section 6.3 after presenting our main inference result.

6.2 Inferring a Bound on Competitive Histories

Given a distribution of historical beliefs µ∗, the share of histories scomp in H that can be

rationalized as competitive can be expressed as follows:

scomp = Eµ∗ [IsComp(d)] with IsComp(d) =

 1 if d satisfies (IC-MKP)

0 otherwise
.

While scomp is not observable, we can define a probabilistic upper bound ŝcomp:

ŝcomp = max
µ∈∆(F)

Eµ[IsComp(d)] (P)

s.t. Eµ[d] ∈ Dα. (ĈR)

Program (P) maximizes the share of histories that can be rationalized as competitive over

distributions of historical beliefs µ ∈ ∆(F) consistent with empirical demand, i.e. distribu-

tions µ such that Eµ[d] ∈ Dα.

Proposition 3. With probability greater than α, ŝcomp ≥ scomp.

For any threshold s0 ∈ [0, 1], consider the test τ ≡ 1ŝcomp<s0. Under the null that scomp ≥

s0, test τ rejects the null with probability less than 1− α.

We remark that when we consider a single upward deviation and take M = +∞, the test

τ ≡ 1ŝcomp<1 reduces to a test of whether or not the elasticity of sample demand is higher
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than −1. Indeed, with a single upward deviation ρ1 > 0 and M = +∞, (IC-MKP) reduces

to (1 + ρ1)dh,1 ≤ dh,0. Hence, if (1 + ρ1)D̂(ρ1|H) > D̂(0|H), (IC-MKP) and (ĈR) cannot

hold simultaneously for all histories h ∈ H whenever confidence set Dα is a sufficiently small

interval containing D̂ = (D̂(ρn|H))n∈M. In this sense, Proposition 2 can be viewed a special

case of Proposition 3.23

The proof of Proposition 3 follows the logic of calibrated projection (Kaido et al., 2019): a

confidence set for an underlying parameter — here the true average expected demand Eµ∗ [d]

— implies a confidence set for a function of the parameter — here, the share of competitive

histories. Statistic ŝcomp is the upper-bound of a confidence interval for underlying true

parameter scomp.

The space of distributions over feasible beliefs µ ∈ ∆(F) is infinite dimensional, which

makes program (P) computationally intractable. However, for each finite set F0 ⊂ F , we

can consider the following program:

max
µ∈∆(F0)

Eµ[IsComp(d)] (Approx-P)

s.t. Eµ[d] ∈ Dα

Program (Approx-P) is now a well behaved finite dimensional linear program in µ ∈ ∆(F0).24

Our next result shows that, provided set F0 is sufficiently dense within F , the solution to

(Approx-P) is approximately equal to ŝcomp.

Consider a sequence (Fn0 )n∈N of finite subsets of F , such that Fn0 becomes dense in F

as n grows large. Denote by ŝncomp the solution to the approximate problem (Approx-P)

associated with Fn0 . The following result holds:

Lemma 1. limn→∞ ŝ
n
comp = ŝcomp.

23For further details, see Appendix OB.2, where we solve problem (P) in closed form for the case of a
single downward or upward deviation.

24If F0 = {d1, · · ·dK} ⊂ [0, 1]M, then µ = (µk)Kk=1 ∈ ∆(F0) is simply a K × 1 vector of non-negative

numbers that sum to 1. The objective function is
∑K
k=1 µkIsComp(dk) and the constraint is

∑K
k=1 µkdk ∈

Dα. Note that both the objective function and the constraint are linear in µ.
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The proof of Lemma 1 is provided in Online Appendix OD.

A natural question is whether ŝcomp is the tightest possible bound on the share of compet-

itive histories. It isn’t. Program (P) exploits restrictions on beliefs imposed by (IC-MKP)

and (ĈR). We show in Appendix OB that when sample size is arbitrarily large, we would be

exploiting all of the empirical content of equilibrium if we imposed demand consistency re-

quirements (ĈR) conditional on all different values of bids and costs c (corresponding to the

bidder’s private information at the time of bidding). In practice, we find that this stretches

both the limits of our data (in finite samples confidence levels drop as we seek to cover many

conditional demands), and of bidder sophistication. Relying on a weaker set of optimality

conditions makes our estimates more robust to partial failures of optimization, consistent

with the critique of Fershtman and Pakes (2012).

6.3 Confidence Sets

In our empirical application, we consider confidence sets Dα of feasible beliefs d ∈ F , taking

the form of convex sets centered around empirical demand vector D̂ ≡ (D̂(ρn|H))n∈M:

Dα =
{

d ∈ F s.t. ∀λ ∈ Λ,
〈
λ,d− D̂

〉
≤ xλ

}
(10)

where: Λ ⊂ RM is a finite set of real vectors λ; parameters xλ ≥ 0 are given positive

thresholds; and 〈·, ·〉 denotes the usual scalar product between vectors. Note that λ is a

vector that is chosen by the researcher. For example, if we take λ to be a standard basis

vector of the form (0, . . . , 0, 1, 0, . . . , 0), with the nth coordinate equal to 1, the corresponding

inequality defines an upper bound on the n-th element of d as dn ≤ D̂(ρn|H) + xλ.

The Boole-Frechet inequality implies that

prob(Eµ∗ [d] ∈ Dα) = prob
(
∀λ ∈ Λ,

〈
λ,Eµ∗ [d]− D̂

〉
≤ xλ

)
≥ 1−

∑
λ∈Λ

prob
(〈
λ,Eµ∗ [d]− D̂

〉
> xλ

)
. (11)
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This implies that to obtain coverage rates for Dα, it is sufficient to provide upper bounds for

prob
(〈
λ,Eµ∗ [d]− D̂

〉
> xλ

)
. As in Proposition 1, a non-asymptotic bound holds.

Lemma 2 (non-asymptotic coverage). For any adapted set of histories H, any vector λ =

(λn)n∈M ∈ RM, and any threshold xλ > 0,

prob
(〈
λ,Eµ∗ [d]− D̂

〉
> xλ

)
≤ exp

(
− x2

λ|H|
2||λ||21Nmax

)
, (12)

where ||λ||1 ≡
∑

n∈M |λn|.

Together with (11), Lemma 2 allows us to construct confidence sets Dα that have ap-

propriate coverage for average expected demand Eµ∗ [d]. Note that we can set |M| = 1 and

λ = −1, 1 in expression (12) to obtain Proposition 1. The proof of Lemma 2 is very similar

to that of Proposition 1. As in the case of Proposition 1, taking the set H to be adapted

plays a crucial role.25

The attraction of bound (12) is that it is non-asymptotic. Unfortunately it is also very

conservative. For this reason we provide less conservative asymptotic bounds relying on a

central limit theorem for renormalized sums of martingale increments (see Billingsley (1995),

Theorem 35.11).

Assume H includes histories corresponding to auctions taking place at {0, 1, ..., T}, so

that |H| grows with T . For any history hi,t ∈ H, let d̂hi,t ≡ (1(1+ρn)bi,t≤∧b−i,t)n∈M denote the

empirical demand at history hi,t. Recall that dhi,t ≡ (dhi,t,n)n∈M denotes bidder i’s actual

expected demand at history hi,t. We assume that λ 6= 0 and

lim
T→+∞

T∑
t=0

var

 ∑
hi,t∈H

〈
λ,dhi,t − d̂hi,t

〉 ∣∣∣∣h0
t

 = +∞.

25Vectors λ ∈ Λ allow us to obtain bounds for demand (and for payoffs) following different deviations.
For instance, when we consider a single downward deviation, we use Λ = {(−1, 0), (−1, 1), (0, 1)}. Hence, set

Dα includes beliefs d = (d−1, d0) satisfying d−1 ≥ D̂(ρ−1|H)− xλ1 , d−1 − d0 ≥ D(ρ−1|H)−D(ρ0|H)− xλ2

and d0 ≤ D(ρ−1|H) + xλ3 . The key observation is that we apply negative coefficients to demand following a
deviation, and positive coefficients to equilibrium demand. This implies a lower bound for demand following
a deviation, and an upper bound for equilibrium demand.
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In other words, bidders remain uncertain about their demand in the long run. This ensures

that a central limit theorem for renormalized sums of martingale increments holds.

Let Ht ≡ {hs ∈ H, s < t} denote the set of bidding histories in H occurring prior to

period t. Let D̂t ≡ 1
|Ht|
∑

h∈Ht d̂h denote the average empirical demand given bidding data

available at time t. For any λ, we define

σ̂λ ≡

√√√√ 1

T + 1

T∑
t=0

|{hi,t ∈ H}|
∑
hi,t∈H

〈
λ, D̂t − d̂hi,t

〉2

.

Lemma 3 (asymptotic coverage). For any adapted set of histories H, any vector λ =

(λn)n∈M ∈ RM, and any threshold xλ > 0,

lim sup
T→+∞

prob

(
|H|

σ̂λ
√
T + 1

〈
λ,Eµ∗ [d]− D̂

〉
> xλ

)
≤ Φ(−xλ)

where Φ is the c.d.f. of the standard normal N (0, 1).

Along with condition (11), this yields the coverage rates for sets Dα that we use in our

empirical investigation. Proofs for Lemmas 2 and 3 are provided in Online Appendix OD.

7 Empirical Findings

In this section, we estimate upper bounds on the share of competitive histories for the

city-level and national-level auctions described in Section 2. Before reporting our findings

we discuss a few points regarding implementation and computation. We also give a brief

discussion of how we address rebidding.

Implementation and computation. We use confidence sets Dα of the form described

by (10) and compute confidence levels using Lemma 3. In our application, we consider the

bound ŝcomp corresponding to several different choices of deviations M. When we consider

a single downward, or a single upward deviation, we use Λ = {(−1, 0), (−1, 1), (0, 1)} and
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Λ = {(1, 0), (1,−1), (0,−1)}, respectively. The key observation is that we apply negative

coefficients to demand following deviations and positive coefficients to equilibrium demand.

This implies lower bounds for demand (and therefore payoffs) after deviations, and upper

bounds for demand (and therefore payoffs) in equilibrium.26 We pick thresholds xλ to en-

sure a 98.33% confidence interval for each dot product
〈
λ,Eµ∗ [d]− D̂

〉
, resulting in a 95%

confidence level for Dα.

When we consider both a downward, and an upward deviation, we set

Λ = {(−1, 0, 0), (−1, 1, 0), (0, 1, 0), (0, 1,−1), (0, 0,−1)}.

For this case, we pick thresholds xλ to ensure a 99% confidence interval for each dot product

to obtain a 95% confidence level for Dα.

In practice, we solve problem (Approx-P) using the following parallelized algorithm for

the case of |M| = 3.

1. Draw 200 samples of 1000 tuples in [0, 1]3 using a seeded uniform distribution and sort

each tuple in decreasing order.27 Each sample of 1000 points in [0, 1]3 corresponds to

a finite subset Fj ∈ F (j = 1, · · · 200) of feasible beliefs.

2. For each sample Fj, compute the solution µ∗j to the associated problem (Approx-P).

The solution µ∗j is a 1000 × 1 vector of non-negative numbers that sum to 1. Let F j
denote the support of µ∗j , truncated to cover 99% of the mass under µ∗j by dropping

belief vectors d ∈ Fj in order of ascending probability µ∗j(d).28

3. Set F0 = ∪j∈{1,··· ,200}F j, and solve the associated (Approx-P) problem.

26Bounds on differences between demands help exploit correlation between demand at different bids. The
set of directions Λ was chosen to exhaust the set of bounds on individual demands, and differences between
demand at deviations and in equilibrium, but does not seek to optimize weights.

27The uniform distribution here does not matter except for ensuring full support. The reason for sorting
each tuple in decreasing order is because demand is decreasing, i.e., dn ≥ dn′ if n < n′

28The support of optimal distributions tends to include much less than 1000 points, i.e., most of the
elements in µ∗j are 0. This approach allows us to collect many good guesses using parallelized computations
on relatively small samples, and then compute the solution associated with the union of these goods guesses.

31



4. Assess convergence by comparing the solution to that obtained starting from different

random seeds up to 10−4.

Rebidding. City-level auctions use public reservation prices, and the results of Section

5 and 6 apply directly. National-level auctions use secret reserve prices, and dealing with

rebidding requires theoretical adjustments. As we explain in Online Appendix OA, incentive

compatibility constraints for bid increases are essentially unchanged. For bid reductions,

we need to assess losses in continuation values when (1) there is rebidding, (2) the bid

reduction changes the lowest bid reported to bidders, thereby affecting their continuation

information.29 We report bounds on the share of competitive histories computed under the

assumption that changing the reported minimum bid reduces a bidder’s continuation value

by at most 50%.30

7.1 A Case Study

We first illustrate the mechanics of inference using bidding data from the city of Tsuchiura,

located in Ibaraki prefecture. We do so by pooling bidding histories associated with auctions

held prior to October 2009. Note that this set of histories is adapted. We select this city for

two reasons: first, Chassang and Ortner (2019) provide evidence that there was collusion in

auctions held prior to October 2009; second, the data turns out to be well suited to illustrate

the information content of different incentive compatibility conditions.

We consider different combinations of deviations ρ ∈ {−.02, 0, .0008}, where by conven-

tion, ρ = 0 is an infinitesimal downward deviation that amounts to breaking ties. The

distribution of ∆ and the deviations we consider (in dashed lines) are illustrated in Figure 4.

The deviations are selected to deliver crisp illustrative results. We are specifically interested

29Recall that the lowest bid in each round of bidding is announced to all of the bidders before the next
round of bidding.

30Note that the reported bid is above the fixed reserve price which bidders must beat to win the auction.
If the reported bid was a function of r alone, then there would be no loss in continuation value associated
with a change in bidders information conditional on rebidding.
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in illustrating the empirical content of individual deviations, as well as complementarities

between upward and downward deviations.

Figure 4: Distribution of ∆ for the city of Tsuchiura, 2007–2009.

A single upward deviation. We first consider a single small upward deviation ρ1 = .0008.

Under inference problem (P), we seek to maximize the share of histories such that demand

(dh)h∈H = ((dh,0, dh,1))h∈H satisfies (IC-MKP) subject to (ĈR). For the case of a single

upward deviation, (IC-MKP) reduces to

(1 + ρ1)dh,1 − dh,0
dh,1 − dh,0

≥ 1

1 +M
,

or equivalently,

(1 + ρ1)dh,1 − dh,0 ≤
1

1 +M
(dh,1 − dh,0).

Note that this condition corresponds to the IC constraint (7) in which ch/bh is set to 1/(1 +

M). An upward deviation is least profitable (and so the data is best explained) when costs
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are low. Aggregating across all histories, the IC constraints imply that:

(1 + ρ1)D(ρ1|H)−D(0|H) ≤ 1

1 +M
(D(ρ1|H)−D(0|H)). (13)

Hence, if

(1 + ρ1)D̂(ρ1|H)− D̂(0|H) >
1

1 +M
(D̂(ρ1|H)− D̂(0|H)), (14)

then for (xλ)λ∈Λ small enough, (IC-MKP) and (ĈR) cannot be satisfied together for all

histories h ∈ H. In auctions from Tsuchiura, a small upward deviation does not change a

bidder’s demand: D̂(0|H) ' D̂(ρ1|H). This implies that (14) holds regardless of the value

of M , and at least some fraction of histories in H must be deemed non-competitive. Note

that when M = +∞, expression (13) reduces to a statement about the elasticity of demand,

i.e., Proposition 2.

The dotted line in Figure 5 corresponds to our estimate of the upper bound on the

share of competitive histories based on Proposition 3 as a function of minimum markup

m, using single upward deviation ρ1 = .0008. For these estimates and all the estimates we

present below, we use Lemma 3 to construct confidence bounds and set tolerance ((xλ))λ∈Λ

so that our estimate is an upper bound for the true share of competitive histories with 95%

confidence. We set M = 0.5.31 Since bounds based only on upward deviations do not depend

on m, the dotted line in Figure 5 is constant at 0.87.

A single upward deviation and tied bids. We now consider combining the upward

deviation with an an infinitesimal downward deviation (ρ ∈ {0, .0008}). Any mass of tied

bids is inherently non-competitive since they create a meaningful benefit from reducing bids

by the smallest possible amount. We note that tied bids are present in the data, but that their

mass is small. Combining the upward deviation with an infinitesimal downward deviation,

we estimate a 95% confidence bound on the share of competitive histories to be 0.86. This

31As Figure OC.7 in the Online Appendix shows, our results are not highly sensitive to the choice of M .
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Figure 5: Share of competitive histories, Tsuchiura.

Deviations {−0.02, 0, 0.0008}; maximum markup 0.5.

is illustrated as the horizontal dashed line in Figure 5. As the figure shows, the presence of

ties has a very small impact on our estimate of the share of non-competitive histories.

A single downward deviation. We now consider the implications from a single down-

ward deviation ρ = −.02. For a single downward deviation, (IC-MKP) reduces to

(1 + ρ−1)dh,−1 − dh,0
dh,−1 − dh,0

≤ 1

1 +m
,

or equivalently,

(1 + ρ−1)dh,−1 − dh,0 ≤
1

1 +m
(dh,−1 − dh,0).

This condition is equivalent to setting ch/bh = 1/(1 + m) in the IC constraint (7), which

means that the data patterns are best explained when costs are high.

Constraints (IC-MKP) and (ĈR) define a convex set. For (xλ)λ∈Λ small enough, (IC-MKP)

and (ĈR) can be satisfied for all histories h ∈ H if and only if the mean empirical demand
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satisfies (IC-MKP):

(1 + ρ−1)D̂(ρ−1|H)− D̂(0|H) ≤ 1

1 +m

[
D̂(ρ−1|H)− D̂(0|H)

]
. (15)

Since ρ−1 < 0, it follows that condition (15) always holds if m is close to zero. This is

intuitive: for a sufficiently small margin, say m < 2%, reducing bids by 2% results in losses

for each auction (.98×1.02−1 < 0). In contrast, if 1+ρ−1 > 1/(1+m) and demand increase

D̂(ρ−1|H)− D̂(0|H) is sufficiently large, then (15) does not hold and some share of histories

must be considered non competitive.

The solid line in Figure 5 plots our estimate of the 95% confidence bound as a function

of m. In this data, a 2% drop in prices leads to a 44 percentage-point increase in the prob-

ability of winning the auction, from D̂(0|H) = 22.6% to D̂(ρ−1|H) = 66.2%, almost tripling

demand. Hence, as minimum markup m increases from 0, inequality (15) fails, implying

that (IC) and (ĈR) cannot be solved together for all histories h ∈ H. Correspondingly, the

bound in Figure 5 is equal to 1 for low values of m, and becomes less than 1 as m increases.32

Complementary upward and downward deviations. Conditions (14) and (15) high-

light that individual upward and downward deviations are rationalized as competitive by

different costs. An upward deviation is least attractive when cost ch is low. A downward

deviation is least attractive when cost ch is large. Hence, upward and downward devi-

ations are complementary from the perspective of inference. The dashed-dotted line in

Figure 5 plots our bound on the share of competitive histories using all three deviations

(ρ ∈ {−.02, 0, .0008}). For all values of m, considering both upward and downward devia-

tions leads to a tighter bound for the share of competitive histories than either upward or

downward deviations alone (ŝcomp is 0.40 when m = 0.025). The high costs needed to ensure

that a downward deviation is not attractive also make upward deviations more attractive.

32The markups we consider contain prior estimates in the literature. Krasnokutskaya (2011) estimates
markups ranging from 0.1% to 24% in Michigan highway procurement auctions. Bajari et al. (2014) estimate
markups from 2.9% to 26.1% in California highway procurement auctions.
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Online Appendix OB.3 establishes this complementarity formally in a simple case.

7.2 Findings from Aggregate Data

We now apply our tests to the full set of auctions in each of our datasets, taking H as the

set of histories corresponding to all municipal or national auctions. Clearly, H is adapted.

Going forward, when applying the results of Section 6, we set M = .5 and use the fixed set

of deviations {−.02, 0, .001} for all datasets. Using a fixed set of deviations for all datasets

is likely suboptimal for statistical power, but offers more transparency.33

Figure 6 shows our estimates of the 95% confidence bound on the share of competitive

histories as a function of minimum markup m, for city and national auctions. The dotted line

corresponds to the estimated bound when we set deviations ρ ∈ {0, .001}. The dashed and

the solid lines correspond to estimates for deviations ρ ∈ {−.02, 0} and ρ ∈ {−.02, 0, .001},

respectively. In the case of national auctions we use penalized incentive compatibility con-

ditions accounting for rebidding detailed in Online Appendix OA.34 We note that upward

deviations alone allow us to detect only a very small number of non-competitive histories

both in city-level auctions and in national-level auctions. One explanation for this is that

looking at the full set of auctions causes us to mix competitive and non-competitive histories,

thereby weakening our ability to detect non-competitive behavior.35 Correspondingly, our

bound does not have much bite when we consider a single upward deviation and we take H

to be the entire sample of auctions. Note that this does not mean that upward deviations are

uninformative: especially in the case of national data, considering both upward and down-

ward deviations can yield significantly tighter bounds on the share of competitive histories

than either deviation alone.

33The magnitude of deviations was set using residual demand plotted in Figures OC.1(a) and OC.1(b) to
achieve large gains in demand for downward deviations, and small drops in demand for upward deviations.

34Online Appendix OC shows that our estimates are not very sensitive to the value of maximum markup
M , or assumptions about continuation payoffs upon re-bidding.

35Even though the missing mass at ∆ = 0 is very noticeable in Figure 1, the density at ∆ = 0 is not quite
low enough at the aggregate level for upward deviations alone to have statistical power.
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Figure 6: Share of competitive histories, city and national level data.

Deviations {−0.02, 0, 0.001}; maximum markup 0.5.

7.3 Zeroing-in on Specific Firms

We now consider applying our tests to individual firms. As we highlight in Ortner et al.

(2020), detecting non-competitive behavior at the firm level helps reduce the potential side-

effects of regulatory oversight. Specifically, it ensures that a cartel cannot use the threat of

regulatory crackdown to discipline bidders.

For both city and national samples, we consider the thirty firms that participate in the

most auctions in each dataset. For each firm, we estimate a bound on the share of competitive

histories taking H to be the set of histories corresponding to all instances in which the firm

participates (set H is clearly adapted to the firm’s information).

Panel (a) of Table 2 reports the results for firms active in the city sample. We order firms

according to the number of auctions in which they participate. We report this number in

column 2. Column 3 reports the share of auctions each firm wins as a fraction of the number

of auctions in which the firm participates. Column 4 reports our estimates for the bound

on the share of competitive histories using deviations {−0.02, 0, 0.001}, minimum markup

m = .025 and maximum markup M = .5. Panel (b) of Table 2 reports the corresponding

results for firms in the national sample. Our bound is less than 1 for eighteen firms for the
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city sample and twenty-four for the national sample.

7.4 Consistency with Proxies for Collusion

We now show that our bounds on the share of competitive histories are consistent with

proxies of collusive behavior. We consider different adapted subsets H associated with

markers of collusion: whether or not the industry has been prosecuted for collusive practices,

and whether bids are high compared to reserve prices.36 We then compute the associated

estimates for the share of competitive histories.

Before and after prosecution. As we noted in Section 2, the JFTC investigated firms

bidding in four groups of national auctions during the period for which we have data: auctions

labeled Bridges, Electric, Floods, and Pre-Stressed Concrete. We now compute bounds on

the share of competitive histories before and after investigation. We exclude the Bridge

category because there are too few observations in the post-investigation sample to obtain a

reliable confidence set (58 bids, vs more than 560 in the other industries).

Figure 7 shows our estimates of the 95% confidence bound on the share of competitive

histories as a function of m, for the three remaining groups of firms. As above, we con-

sider deviations {−0.02, 0, .001} and set M = .5. For all three industries, we find that the

share of competitive histories is higher after the investigation than before, consistent with

the interpretation that collusion was more rampant before the investigation and less severe

afterwards.37

High vs. low bids. We now compare the estimates that we obtain when focusing on

histories with low bids relative to high bids. Because collusion typically elevates prices, we

36In Online Appendix OC.3 we correlate our firm-level bounds on competitiveness with an indicator of
collusive behavior introduced by Imhof et al. (2018) in the context of Swiss antitrust policy.

37In Online Appendix OC.2 we perform sensitivity analysis of the share of competitive histories in these
three industries to changes in the confidence level used for inference, and the set of deviations considered.
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(c) Pre-Stressed Concrete

Figure 7: Share of competitive histories, before and after JFTC investigation.

Deviations {−0.02, 0, 0.001}; maximum markup 0.5.

expect the share of competitive histories to be higher for histories with low bids and vice

versa. Specifically, we divide the city-level data into histories with high bids relative to the

reserve price (i.e., b
r
≥ 0.9) and those with low bids (i.e., b

r
< 0.9). Since the reserve price is

known to bidders in the city auctions, these two sets of histories are adapted.

Figure 8 plots our estimates of the bound on the share of competitive histories for histories

with high bids (solid line) and low bids (dotted line) for the city auctions. As before, we use

deviations {−0.02, 0, .001} and set M = .5. As the figure shows, the fraction of competitive

histories is lower for histories with high bids. This is consistent with the fact that collusion
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increases bids.
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Figure 8: Share of competitive histories by bid level, city data.

Deviations {−0.02, 0, 0.001}; maximum markup 0.5.

8 Discussion

This paper develops tests of competitive bidding valid under general assumptions allowing

for non-stationary costs and signals. In addition to the motivating observation that winning

bids are isolated, we identify another suspicious pattern in the data: a 2% reduction in bids

causes a large increase in demand.

Our tests are conservative: they can be passed by any firm that is bidding competitively

under some information structure. Such caution is justified by the high direct and collateral

costs of launching a formal investigation against non-collusive firms (Imhof et al., 2018). In a

companion paper building on the same framework (Ortner et al., 2020), we identify another

important property of such tests: antitrust investigation based on tests that are passed by

any competitive firm does not generate new collusive equilibria. This addresses the concern

that data-driven regulation may inadvertently enhance a cartel’s ability to collude (Cyrenne,
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1999, Harrington, 2004). For these two reasons, we believe that our tests provide a sensible

starting point for data-driven antitrust in public procurement.

The Online Appendices collect important extensions of our baseline framework: how to

deal with secret reserve prices and re-bidding; how to deal with common values; and how to

construct money denominated metrics of non-competitive behavior.

We conclude with a discussion of practical aspects of our tests: (i) firms’ responses to

antitrust oversight, (ii) the relation between the rejection of the test and collusion, (iii) non-

collusive explanations for missing bids, and (iv) issues related to the implementation of our

tests.

What if firms adapt? Non-competitive bidders may adapt to the screens used by an-

titrust authorities, reducing their efficacy. We show in a companion paper (Ortner et al.,

2020) that antitrust oversight based on tests that are robust to the information structure

always reduces the set of enforceable collusive schemes available to cartels. That is, screens

based on robust tests always make cartels worse off, even if firms know they are being

monitored and adapt their play accordingly.

Moreover, we note that simple adaptive responses to our tests may themselves lead to

suspicious patterns. For instance, collusive firms may adapt their play to our tests by “filling

the gap” in the distribution of ∆ to avoid generating the suspicious patterns in Figure

1.38 While such adaptive response would reduce the profitability of upward deviations by

winning bidders, it would also make downward deviations by losing bidders more profitable,

potentially also leading to patterns that would fail our tests.39

38In Kawai et al. (2020), we propose screens of non-competitive behavior that have statistical power
precisely when the distribution of bid differences ∆ has sufficient mass around ∆ = 0.

39In fact, as we argue in Ortner et al. (2020), the bidding patterns we highlight as suspicious can be
interpreted as by-products of cartel responses to existing antitrust oversight flagging-out tied and nearly
tied bids. This view connects our findings to a body of work on the internal organization of cartels. Asker
(2010) describes the internal allocation procedure used in a stamp auction cartel. Pesendorfer (2000) studies
the bidding patterns for school milk contracts and compares the collusive schemes used by cartels that used
transfers and those that did not. Clark and Houde (2013) document collusive strategies used by the retail
gasoline cartel in Quebec. Clark et al. (2018, 2020) study the effect of an investigation on bidding behavior.
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Rejection of the test and collusion. Our tests, which are aimed at detecting failures

of competitive behavior, do not distinguish among the various reasons why a given dataset

may be inconsistent with competition. Failure to pass our test does not necessarily imply

bidder collusion.40 However, findings from Section 7 show that rejection of our tests is in fact

correlated with different markers of collusion. Indeed, in industries that were investigated

for bid rigging, the fraction of competitive histories is lower before the investigation than

after. The fraction of competitive histories is lower at histories at which bids are high relative

to the reserve price. Altogether, this suggests that our test are sufficiently powered to flag

cartels in practice.

Non-collusive explanations. It is instructive to evaluate potential non-collusive expla-

nations for the bidding patterns in our data. One possibility is that bidders are committing

errors, say playing an ε-equilibrium of the game. This explanation is not entirely satisfac-

tory for two reasons. First, the potential gains from downward deviations are not small, and

bidders have many opportunities to learn. Second, natural models of erroneous play do not

generate the patterns we see in the data. For instance, by adding noise on bids, quantal

response equilibrium (McKelvey and Palfrey, 1995) would smooth out rather than enhance

the pattern of missing bids.

Another possible explanation for the anomalous bidding patterns we note in the data

is to take into account dynamic payoff consequences of winning an auction, through either

capacity constraints, or learning by doing. A rapid analysis suggests that such dynamic

considerations are unlikely to explain the data. Capacity constraints essentially correspond

to an increase in the bidder’s cost reflecting reduced continuation values. This increases

the attractiveness of upward deviations. Similarly, learning-by-doing reduces the cost of

accepting a project. This increases the attractiveness of downward deviations.

40For instance, firms that hold systematically incorrect beliefs about their opponents’ bids may fail our
test, even if they are bidding to maximize their stage-game subjective expected payoffs. In addition, our
tests cannot distinguish between tacit and explicit collusion.
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Practical implementation. An important question for practical implementation con-

cerns the choice of what set of histories H to apply our methods to. Besides the requirement

that set H should be adapted, our analysis assumes that bidders take into account all the

relevant information provided by past bidding data.41 Pooling data from competitive and

non-competitive environments may obscure non-competitive bidding patterns, making it

harder to reject the null of competition. The value of pooling data from different settings is

that it potentially affords better power if non-competitive behavior is broadly prevalent. In

addition, separately analyzing sub-industries raises multiple hypothesis testing concerns.

A second important aspect of practical implementation is the choice of deviations ρ ∈

(−1,+∞) being considered. As we have already noted, downward deviations are most bind-

ing when small drops in price lead to a large increase in demand. Upward deviations are

most binding when relatively large increases in price cause relatively small drops in demand.

Note that it may be difficult to estimate drops in demand for very small upward deviations

(even if the empirical standard deviation of estimates is an exact 0). For that reason, we

suggest that ρ should not be smaller (in absolute value) than the granularity of bids; i.e.,

ρ should lie in the support of bi,k/bi,k′ − 1 where bi,k and bi,k′ are adjacent (not necessarily

winning) bids.

Appendix

A Proofs

Proof of Proposition 1. Let H be an adapted set of histories, and fix ρ ∈ (−1,∞).

Recall that one auction happens at each time t ∈ {0, 1, ..., T} and that bidding outcomes are

41Note that our analysis extends even if bidders do not keep track of bids from other regions, provided
that realized demand is independent across regions, conditional on the information bidders do keep track of.
If bidders do not keep track of external information even though it is relevant, then our estimator D̂(ρ|H) of
demand D(ρ|H) is unbiased (and consistent provided the sample size of the data bidders do track becomes
arbitrarily large), but our analysis underestimates its true standard error.
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revealed in real time. For each time t, define

εt ≡
∑
hi,t∈H

Eσ[1∧b−i,t>bi,t(1+ρ)|hi,t]− 1∧b−i,t>bi,t(1+ρ).

Note that D̂(ρ|H)−D(ρ|H) = 1
|H|
∑T

t=0 εt. Note further that, by the law of iterated expecta-

tions, for all public histories h0
t−s ∈ H with s ≥ 0, Eσ[εt|h0

t−s] = 0. Hence, ST ≡
∑T

t=0 εt is a

Martingale with respect to public histories (h0
t )t≥0. Since the absolute value of its increments

εt is bounded above by N t, the number of bidders participating at time t with histories in

H, the Azuma-Hoeffding Inequality implies that for every ν > 0,

prob(|ST | ≥ ν|H|) ≤ 2 exp

(
−ν2|H|2

2
∑T

t=0N
2

t

)
.

Observing that
∑T

t=0N
2

t ≤
∑T

t=0N tNmax = Nmax|H|, this implies that

prob(|ST | ≥ ν|H|) ≤ 2 exp
(
−ν2|H|/2Nmax

)
.

This concludes the proof. �

Proof of Proposition 3. By assumption, constraint (ĈR) is satisfied by the distribution

of historical beliefs µ∗ with probability greater than α. Whenever µ∗ satisfies (ĈR), ŝcomp is

weakly larger than scomp by construction. This implies that ŝcomp ≥ scomp with probability

greater than α.

Hence, if scomp ≥ s0, then with probability greater than α, ŝcomp ≥ scomp ≥ s0, so that

test τ = 1ŝcomp<s0 rejects the null that scomp ≥ s0 with probability less than 1− α. �
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Online Appendix – Not for Publication

OA Multistage Bidding

National level auctions in our data follow a first-price auction format with a secret reserve

price. This means that the auction is a multistage game, with stages k ∈ {1, · · · , k}. The

auctioneer picks a secret reserve price r. At each stage k, bidders submit bids bi,k. A

winner is declared if and only if mini bi,k ≤ r. In this case, the winner is paid her bid. If

instead mini bi,k > r the game continues to an additional stage. At the end of each stage

without a winner, the lowest bid is revealed. The reserve price is constant across stages.

In this Appendix we extend the revealed preference inequalities of Section 6 to multistage

first-price auctions.

In a multistage auction, a bidder’s continuation strategy after her first bid is a contingent

plan dependent on the information revealed at each stage. We denote by bi,1 bidder i’s first

bid, and by βi her continuation play, mapping future information to bids.

Given an equilibrium strategy σi = (bi,1, βi) by player i we consider first-stage-only devia-

tions σ′i = (b′i,1, βi) such that player i’s initial bid is different, but her continuation contingent

plan, as a function of her own private signals, and the play of others, is unchanged.

Let wini,k denote the event that bidder i wins in round k. Expected profits under σi and

σ′i take the form

Eσi [πi] = (bi,1 − ci)probσi,σ−i(wini,1) + Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

]

Eσ′i [πi] = (b′i,1 − ci)probσ′i,σ−i(wini,1) + Eσ′i,σ−i

[∑
k>1

(bi,k − ci)1wini,k

]

We now introduce a classification of histories following upward and downward deviations

in the first round as a function of how they affect the continuation play. We say that a

deviation is marginal for continuation, if it changes whether the auction continues after period

1. When a deviation is marginal for information, it changes the information available to

participants in future periods. If a deviation is non-marginal, it does not affect continuation

play. This corresponds to the following formal definition.

Definition OA.1. Consider an upward deviation b′i,1 > bi,1. It is marginal for continuation
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(MC) if and only if bi,1 ≤ r < ∧b−i,1, and b′i,1 > r. It is marginal for information (MI) if

and only if r < bi,1 < ∧b−i,1. It is non-marginal (NM) otherwise.

Consider a downward deviation b′i,1 < bi,1. It is marginal for continuation (MC) if and

only if b′i,1 ≤ r < ∧b−i,1, and bi,1 > r. It is marginal for information (MI) if and only if

r < b′i,1 < ∧b−i,1. It is non-marginal (NM) otherwise.

Note that we can assess the marginality of deviations using data, since it only relies on

observed period 1 bids. Note also that bidder i’s belief that a given deviation is marginal

for continuation or information only depends on the bidder i’s beliefs about bids b−i,1.

For bids bi,1 and b′i,1, we have that

Eσi [πi] = (bi,1 − ci)probσi,σ−i(wini,1) + Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MC

]
probσ−i(MC)

+ Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MI

]
probσ−i(MI) + Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣NM] probσ−i(NM)

Eσ′i [πi] = (b′i,1 − ci)probσ′i,σ−i(wini,1) + Eσ′i,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MC

]
probσ−i(MC)

+ Eσ′i,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MI

]
probσ−i(MI) + Eσ′i,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣NM] probσ−i(NM)

Equilibrium implies that under player i’s beliefs Eσi [πi] ≥ Eσ′i [πi]. We now establish

implications of this equilibrium condition that can be taken to the data.

For all deviations, the following hold:

• Bids must decrease with the stage of the game: bi,k > bi,k+1; indeed, since the reserve

price is constant, any bid submitted in period k wins with probability 0 in period k+1

if the auction continues.

• Continuation payoffs under σi and σ′i are equal conditional on the deviation being

non-marginal.

If the deviation is an upward deviation then,

• Player i’s continuation value under σi is equal to zero when the deviation is marginal

for continuation.
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• If continuation strategies βi, β−i are monotonic in observed bids, then

Eσ′i,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MI

]
≥ Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MI

]
.

It follows from this that Eσi [πi] ≥ Eσ′i [πi] implies

(bi,1 − ci)probσi,σ−i(wini,1) ≥ (b′i,1 − ci)probσ′i,σ−i(wini,1). (O1)

This coincides with the IC constraint for upward deviations used in Sections 5 and 6.

If the deviation is a downward deviation then player i’s continuation value under σ′i is

equal to zero when the deviation is marginal for continuation. Furthermore we assume that

for some α ∈ (0, 1)

Eσ′i,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MI

]
≥ (1− α)Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MI

]
. (O2)

In words, following a downward deviation that is marginal for information (meaning that

the bid is in fact above the reserve price, which it would have to beat to win at a later

stage) the change in the information provided in the continuation stage does not destroy all

the continuation value of the bidder. Note that if at the end of each stage the auctioneer

revealed an exogenous signal of the reserve price, rather than the endogenous minimum bid,

then condition (O2) would hold with α = 0. In our empirical investigation, we use α = .5.

Finally, we observe that the following bounds hold

Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MI

]
≤ E[(r − ci)+],

Eσi,σ−i

[∑
k>1

(bi,k − ci)1wini,k

∣∣∣MC

]
≤ E[(r − ci)+].

Altogether, with optimality condition Eσi [πi] ≥ Eσ′i [πi] this implies that

(bi,1 − ci)probσi,σ−i(wini,1) ≥(b′i,1 − ci)probσ′i,σ−i(wini,1) (O3)

−
[
probσ−i(MC) + αprobσ−i(MI)

]
E[(r − ci)+].
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Equations (O1) and (O3) replace (IC) in the inference problem defined Section 6. In

addition to disciplining residual demand under µ, expanded consistency requirement (ĈR)

must ensure that the probability of events MI and MC under the true historical average

distribution of beliefs µ∗ must also be close to their sample probability. Denote by mih and

mch the probability that downward deviation ρ is marginal for information or continuation

at h. An extension of Proposition 1 implies that for any ρ < 0, with large probability as |H|
becomes large,

Eµ∗ [mi] ≡
1

|H|
∑
h∈H

mih ∈

[
1

|H|
∑
h∈H

1r<(1+ρ)bi,1<∧b−i,1 ±K

]

Eµ∗ [mc] ≡
1

|H|
∑
h∈H

mch ∈

[
1

|H|
∑
h∈H

1(1+ρ)bi,1≤r<∧b−i,1 ±K

]

where K is an arbitrary fixed tolerance parameter. This implies that we can expand coverage

sets Dα introduced in Section 6.3 to cover not only the true expected vector of demands

Eµ∗ [d], but also the true expected probability that deviations are marginal: Eµ∗ [mi] and

Eµ∗ [mc].

OB Further Theoretical Results

OB.1 Connection with Bayes Correlated Equilibrium

In this section we further extend the estimator introduced in Section 6 and clarify what

would need to be added so that asymptotically, it exploits all implications from equilibrium.

This allows us to connect with the work of Bergemann and Morris (2016).

For simplicity we assume that player identities i, bids b and costs c take a fixed finite

number of values (i, b, c) ∈ I×B×C that does not grow with sample size |H|. Ties between

bids are resolved with uniform probability. Deviations ρn ∈ (−1,∞) correspond to the ratios

of different bids on finite grid B.

In Section 6 we were able to express inference problem (P) as a function of beliefs alone.

Because both costs and bids are part of bidders’ information set (so that selecting histories

on the basis of both beliefs and costs is adapted), to exploit all the information content

of equilibrium, we must impose constraints on demand conditional on both bids and costs.

For this reason, instead of expressing our inference problem using the distribution of beliefs

alone, we express this new inference problem using the historical profile of beliefs, costs and
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bids.42

For any history h ∈ H, let ωh = ((dh,n)n∈M, ch) be the demand and cost of the firm

associated with history h. Let ωH = (ωh)h∈H denote the profile of demands and costs across

all histories in H. Let Ω ≡ {ωH : ∀h ∈ H, (dh,n)n∈M ∈ F} be the set of environments ωH

with feasible demands.

For each profile ωH ∈ Ω, define

Hcomp(ωH) ≡ {h ∈ H s.t. (dh, ch) satisfy (IC) and (MKP)},

to be the set of histories in H that satisfy markup constraint (MKP) and are rationalizable

as competitive under ωH .

For each set of adapted histories H, each deviation n, and each profile ωH = (ωh)h∈H , let

Dn(ωH , H) ≡ 1

|H|
∑
hi,t∈H

dhi,t,n

be the average residual demand when firms’ demands and costs are given by ωH .

We extend problem (P) as follows. For any environment ωH and (i, b, c) ∈ I × B × C,

let us define Hi,b,c(ωH) ≡ {h ∈ H|(ih, bh, ch) = (i, b, c)} to be the histories at which bidder

i experiences a cost c and bids b. Note that Hi,b,c is adapted to the information of player i.

For any tolerance function K : N→ R+ such that

lim
k→∞

K(k) = 0 and lim
k→∞

exp
(
−K(k)2k/2Nmax

)
= 0

we consider inference problem (P′)

ŝcomp = max
ωH

|Hcomp(ωH)|
|H|

(P′)

s.t. ∀(i, b, c),∀n, Dn(ωH , Hi,b,c(ωH)) ∈
[
D̂(ρn|Hi,b,c(ωH))−K(|Hi,b,c(ωH)|),

D̂(ρn|Hi,b,c(ωH)) +K(|Hi,b,c(ωH)|)
]
.

Problem (P′) differs from (P) by imposing demand consistency requirements conditional on

all triples (i, b, c). Proposition 3 continues to hold with an identical proof: with probability

approaching 1 as |H| goes to∞, ŝcomp is an upper bound to the share of competitive histories.

Imposing consistency requirements conditional on bids and costs lets us establish a converse:

42As in Section 6, we could directly consider the joint distribution of beliefs, costs and bids.
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if data passes our extended tests, then the joint distribution of bids and costs is an ε-Bayes

correlated equilibrium in the sense of Hart and Mas-Colell (2000).

Consider an ωH solving (P′). Let µ̂ ∈ ∆
(
[B × C]I

)
denote the sample distribution over

bids and costs implied by (H,ωH).

Proposition OB.1. For any ε > 0, for |H| large enough, ŝcomp = 1 implies that µ̂ is an

ε-Bayes correlated equilibrium of the stage-game first-price auction.

Proof. Consider demand and costs (dh,n, ch)h∈H solving Problem (P′), and µ̂ the corre-

sponding sample distribution over profiles of bids b and costs c.

In order to deal with ties, we denote by ∧b−i � bi the event “∧b−i > bi, or ∧b−i = bi

and the tie is broken in favor of bidder i.”

For |H| large enough, we have that for all (i, b, c) and all n,

1

|H|

∣∣∣∣∣∣
∑

h∈Hi,b,c

dn,h − probµ̂(∧b−i � (1 + ρn)bi|i, b, c)

∣∣∣∣∣∣ ≤ ε. (O1)

In addition, ŝ = 1 implies that (IC) holds at all histories: for all h, n,

dh,n((1 + ρn)bh − ch) ≤ dh,0(bh − ch).

Summing over histories h ∈ Hi,b,c yields

1

|H|
∑

h∈Hi,b,c

dh,n((1 + ρn)bh − ch)− dh,0(bh − ch) ≤ 0.

Hence for |H| large enough, for all (bi, ci),∑
b−i,c−i

µ̂(bi, ci, b−i, c−i)
(
1∧b−i�(1+ρn)bi((1 + ρn)bi − ci)− 1∧b−i�bi(bi − ci)

)
≤ ε.

It follows that µ̂ is an ε-Bayes correlated equilibrium in the sense of Hart and Mas-Colell

(2000). �

55



OB.2 Bounding the Share Competitive Histories in Simple Cases

This section provides an explicit characterization of bound ŝcomp when we consider either a

single upward deviation, or a single downward deviation.

OB.2.1 Inference from an upward deviation

Consider first the case of a single upward deviation ρ1 > 0. Let Λ = {(1, 0), (0,−1)} and

xλ = x > 0 for all λ ∈ Λ. Set Dα then takes the form:

Dα =
{

d = (d0, d1) ∈ F s.t. d0 ≤ D̂(ρ0|H) + x and d1 ≥ D̂(ρ1|H)− x
}
.

Bound ŝcomp takes the form

ŝcomp = min

{
1, 1−

(D̂(ρ1|H)− x)
(
1 + ρ1

(
1 + 1

M

))
− (D̂(ρ0|H) + x)

ρ1

(
1 + 1

M

) }
.

Note that when M = +∞, ŝcomp < 1 is equivalent to the condition that elasticity of demand

is larger than -1:

ŝcomp < 1⇐⇒ log(D̂(ρ1|H)− x)− log(D̂(ρ0|H) + x)

log(1 + ρ1)
> −1.

When bidder’s demand is unchanged following an upward deviation (i.e., when D̂(ρ1|H) ≈
D̂(ρ0|H)), for x > 0 small enough we have ŝcomp < 1 even as M goes to +∞.

Proof. For any competitive history h ∈ H, beliefs dh,1 and dh,0 must be such that(
1 + ρ1 −

1

1 +M

)
dh,1 ≤

(
1− 1

1 +M

)
dh,0

⇐⇒ dh,0 ≥ dh,1

(
1 + ρ1

(
1 +

1

M

))
, (O2)

where the first inequality uses the mark-up constraint ch
bh
≥ 1

1+M
. Suppose that

D̂(ρ0|H) + x ≥ (D̂(ρ1|H)− x)

(
1 + ρ1

(
1 +

1

M

))
(O3)

Note that in this case, ŝcomp = 1. Indeed, let µ ∈ ∆(F) be a distribution that puts all its

mass at (d0, d1), with d0 = D̂(ρ0|H) + x, and d1 = D̂(ρ1|H)− x. Note that Eµ[d] ∈ Dα, and
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Eµ[IsComp(d)] = 1.

Suppose next that (O3) does not hold. Let µ ∈ ∆(F) be a distribution satisfying the

constraint Eµ[d] ∈ Dα, and let ŝ(µ) = Eµ[IsComp(d)] be the share of competitive histories

under µ. Note that

D̂(ρ0|H) + x ≥ Eµ[d0] = ŝcomp(µ)Eµ[d0|IsComp(d) = 1] + (1− ŝcomp(µ))Eµ[d0|IsComp(d) = 0]

(O4)

D̂(ρ1|H)− x ≤ Eµ[d1] = ŝcomp(µ)Eµ[d1|IsComp(d) = 1] + (1− ŝcomp(µ))Eµ[d1|IsComp(d) = 0]

(O5)

Since equation (O2) holds for d with IsComp(d) = 1, we have that

Eµ[d0|IsComp(d) = 1] ≥ Eµ[d1|IsComp(d) = 1]

(
1 + ρ1

(
1 +

1

M

))
(O6)

Using (O4)-(O6), we get

D̂(ρ0|H) + x− (1− ŝcomp(µ))Eµ[d0|IsComp(d) = 0]

≥ŝcomp(µ)Eµ[d0|IsComp(d) = 1]

≥ŝcomp(µ)Eµ[d1|IsComp(d) = 1]

(
1 + ρ1

(
1 +

1

M

))
≥
(
D̂(ρ1|H)− x− (1− ŝcomp(µ))Eµ[d1|IsComp(d) = 0]

)(
1 + ρ1

(
1 +

1

M

))
. (O7)

From equation (O7), we get

(D̂(ρ1|H)− x)

(
1 + ρ1

(
1 +

1

M

))
− (D̂(ρ0|H) + x)

≤(1− ŝcomp(µ))

(
Eµ[d1|IsComp(d) = 0]

(
1 + ρ1

(
1 +

1

M

))
− Eµ[d0|IsComp(d) = 0]

)
≤(1− ŝcomp(µ))ρ1

(
1 +

1

M

)
=⇒ ŝcomp(µ) ≤ 1−

(D̂(ρ1|H)− x)
(
1 + ρ1

(
1 + 1

M

))
− (D̂(ρ0|H) + x)

ρ1

(
1 + 1

M

) .

where the second inequality follows since 1 ≥ Eµ[d0|IsComp(d) = 0] ≥ Eµ[d1|IsComp(d) =
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0] ≥ 0. Since this inequality holds for all µ ∈ ∆(F) satisfying the constraint Eµ[d] ∈ Dα,

ŝcomp ≤ s1 ≡ 1−
(D̂(ρ1|H)− x)

(
1 + ρ1

(
1 + 1

M

))
− (D̂(ρ0|H) + x)

ρ1

(
1 + 1

M

) .

Finally, to see that ŝcomp = s1 when (O3) does not hold, let µ ∈ ∆(F) be a distribution

that puts weight 1 − s1 on beliefs dnc = (dnc0 , d
nc
1 ) = (1, 1) and puts weight s1 on beliefs

dc = (dc0, d
c
1) such that s1d

c
0 + (1 − s1) = D̂(ρ0|H) + x and s1d

c
1 + (1 − s1) = D̂(ρ1|H) − x.

One can check that Eµ[d] ∈ Dα and that Eµ[IsComp(d)] = s1. Hence, when (O3) does not

hold, ŝcomp = s1. �

OB.2.2 Inference from a downward deviation

Consider next the case of a single downward deviation ρ−1 < 0. Let Λ = ((−1, 0), (0, 1)) and

xλ = x > 0 for all λ ∈ Λ. Set Dα then takes the form:

Dα =
{

d = (d−1, d0) ∈ F s.t. d−1 ≥ D̂(ρ−1|H)− x and d0 ≤ D̂(ρ0|H) + x
}
.

With a single deviation ρ−1 < 0 such that m ≤ 1/(1+ρ−1)−1, all histories can be rationalized

as competitive. Indeed, reducing bids by ρ−1 would result in negative profits if costs are such

that bh/ch = 1 +m. Instead, if m > 1/(1 + ρ−1)− 1, the solution to program (P) is

ŝcomp = min

{
1, 1−

(D̂(ρ−1|H)− x)
(
1 + ρ−1

(
1 + 1

m

))
− (D̂(ρ0|H) + x)

1 + ρ−1

(
1 + 1

m

) }
.

Proof. For any competitive history h, beliefs dh,−1 and dh,0 must be such that(
1 + ρ−1 −

1

1 +m

)
dh,−1 ≤

(
1− 1

1 +m

)
dh,0

⇐⇒ dh,0 ≥ dh,−1

(
1 + ρ−1

(
1 +

1

m

))
, (O8)

where the first inequality uses the mark-up constraint ch
bh
≤ 1

1+m
. Suppose that

D̂(ρ0|H) + x ≥ (D̂(ρ−1|H)− x)

(
1 + ρ−1

(
1 +

1

m

))
(O9)

Note that in this case, ŝcomp = 1. Indeed, let µ ∈ ∆(F) be a distribution that puts all its mass
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at (d−1, d0), with d−1 = D̂(ρ−1|H)−x and d0 = min{D̂(ρ0|H)+x, D̂(ρ−1|H)−x}. Note that

Eµ[d] ∈ Dα, and Eµ[IsComp(d)] = 1. Note that (O9) always holds when m ≤ 1/(1+ρ−1)−1.

Suppose next that (O9) does not hold. Let µ ∈ ∆(F) be a distribution satisfying the con-

straint Eµ[d] ∈ Dα, and let ŝcomp(µ) = Eµ[IsComp(d)] be the share of competitive histories

under µ. Note that equation (O4) must hold. In addition,

D̂(ρ−1|H)−x ≤ Eµ[d−1] = ŝcomp(µ)Eµ[d−1|IsComp(d) = 1]+(1−ŝcomp(µ))Eµ[d−1|IsComp(d) = 0]

(O10)

Since equation (O8) holds for d with IsComp(d) = 1,

Eµ[d0|IsComp(d) = 1] ≥ Eµ[d−1|IsComp(d) = 1]

(
1 + ρ−1

(
1 +

1

m

))
(O11)

Using (O4), (O10) and (O11), we get

D̂(ρ0|H) + x ≥D̂(ρ0|H) + x− (1− ŝcomp(µ))Eµ[d0|IsComp(d) = 0]

≥ŝcomp(µ)Eµ[d0|IsComp(d) = 1]

≥ŝcomp(µ)Eµ[d−1|IsComp(d) = 1]

(
1 + ρ−1

(
1 +

1

m

))
≥
(
D̂(ρ−1|H)− x− (1− ŝcomp(µ))Eµ[d−1|IsComp(d) = 0]

)(
1 + ρ−1

(
1 +

1

m

))
≥
(
D̂(ρ−1|H)− x− (1− ŝcomp(µ))

)(
1 + ρ−1

(
1 +

1

m

))
, (O12)

where the first inequality uses 0 ≤ Eµ[d0|IsComp(d) = 0] and the last inequality uses

Eµ[d−1|IsComp(d) = 0] ≤ 1. It follows from (O12) that

ŝcomp(µ) ≤ 1−
(D̂(ρ−1|H)− x)

(
1 + ρ−1

(
1 + 1

m

))
− (D̂(ρ0|H) + x)

1 + ρ−1

(
1 + 1

m

) .

Since this holds for all µ ∈ ∆(F) satisfying the constraint Eµ[d] ∈ Dα,

ŝcomp ≤ s−1 ≡ 1−
(D̂(ρ−1|H)− x)

(
1 + ρ−1

(
1 + 1

m

))
− (D̂(ρ0|H) + x)

1 + ρ−1

(
1 + 1

m

) .

Finally, to see that ŝcomp = s−1 when (O9) does not hold, let µ ∈ ∆(F) be a distribu-

tion that puts weight 1 − s−1 on beliefs dnc = (dnc−1, d
nc
0 ) = (1, 0) and puts weight s−1

on beliefs dc = (dc−1, d
c
0) such that s−1d

c
0 + (1 − s−1)dnc0 = s−1d

c
0 = D̂(ρ0|H) + x and
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s−1d
c
−1 + (1− s−1)dnc−1 = s−1d

c
−1 + (1− s−1) = D̂(ρ−1|H)−x. One can check that Eµ[d] ∈ Dα

and that Eµ[IsComp(d)] = s−1. Hence, when (O9) does not hold, ŝcomp = s−1. �

OB.3 Complementarities Between Upward and Downward Devi-

ations

In this appendix we clarify complementarities between downward and upward deviations and

establish a possibility result in a stylized setting. Even if neither individual deviation implies

that a positive share of auctions is non competitive, the joint restrictions imposed by upward

and downward deviations can imply that a positive share of auctions is non competitive. For

simplicity we focus on the case of arbitrarily large data so that we can use limit confidence

set Dα = {D̂}, where D̂ = (D̂(ρn|H))n∈M.

As we discussed in Section 7, individual upward and downward deviations respectively

imply strict bounds on the share of competitive histories if and only if

D̂(0|H)− (1 + ρ1)D̂(ρ1|H) <
1

1 +M

[
D̂(0|H)− D̂(ρ1|H)

]
,

(1 + ρ−1)D̂(ρ−1|H)− D̂(0|H) >
1

1 +m

[
D̂(ρ−1|H)− D̂(0|H)

]
.43

To clarify the existence of complementarities between upward and downward deviations, we

now consider the special case in which

D̂(0|H)− (1 + ρ1)D̂(ρ1|H) =
1

1 +M

[
D̂(0|H)− D̂(ρ1|H)

]
, (O13)

(1 + ρ−1)D̂(ρ−1|H)− D̂(0|H) =
1

1 +m

[
D̂(ρ−1|H)− D̂(0|H)

]
. (O14)

Individual upward and downward deviations imply no restrictions on the set of competitive

histories. However, different deviations are potentially rationalized by using different costs

at the same history. We show this is indeed the case, and that jointly considering upward

and downward deviations can yield strict constraints on the share of competitive histories.

The following lemma clarifies that markup constraints will play a role in our argument.

Lemma OB.1. Under (O13) and if m = 0 and M = +∞, then all histories can be ratio-

43Checking whether these constrains hold can be performed rapidly, and suggests a rough rationale by
which one could pick ρ−1 and ρ1: obtain a smooth estimate of the true demand, and pick ρ−1 and ρ1 so that
the conditions above hold with a reliable margin.
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nalized as competitive.

Proof. The following demand and costs rationalize the observed bidding behavior while

satisfying consistency requirement (ĈR). At every history h such that the bidder wins, we

set dh,0 = 1, dh,−1 = 1, dh,1 = D̂(ρ1|H)/D̂(0|H) and ch = 0. Since ρ1 > 0, dh,1 ≤ 1.

At every history h such that the bidder loses, but would win after reducing its bids by

ρ−1, we set dh,0 = dh,1 = 0, dh,−1 = 1 and ch = bh

At every history such that the bidder loses even after deviation ρ−1, we set dh,−1 = dh,0 =

dh,1 = 0, and ch = bh.

It is immediate that these demand and costs are feasible, and satisfy (IC) and (ĈR). �

We return now to the case where (O13) and (O14) hold for m > 0. We establish lower

bounds for the number of histories at which ch/bh must be equal to 1
1+m

and 1
1+M

. Whenever

these two lower bounds are mutually incompatible, the share of competitive histories is

strictly less than one.

Histories such that ch/bh = 1/(1 +M). (IC) for upward deviation ρ1 implies that for all

histories h,

dh,0 − (1 + ρ1)dh,1 ≥ (dh,0 − dh,1)
ch
bh
.

Summing over all histories, conditions (ĈR) and (O13) imply that

1

|H|
∑
h∈H

(dh,0 − dh,1)
ch
bh
≤ 1

|H|
∑
h∈H

dh,0 − (1 + ρ1)dh,1 =
1

1 +M
(D̂(0|H)− D̂(ρ1|H))

=
1

|H|
∑
h∈H

(dh,0 − dh,1)
1

1 +M
.

Since dh,0 − dh,1 ≥ 0 and ch/bh ≥ 1
1+M

, this implies that whenever dh,0 − dh,1 > 0, ch/bh =

1/(1 +M).

Note that if dh,0 = dh,1 > 0 then dh,0 − (1 + ρ1)dh,1 < 0 so that (IC) cannot hold. Hence

dh,0 − dh,1 = 0 implies dh,0 = dh,1 = 0. This implies that

1

|H|
∑
h∈H

1dh,0−dh,1>0 ≥
1

|H|
∑
h∈H

1dh,0>0 ≥
1

|H|
∑
h∈H

dh,0 = D̂(0|H).

Hence the share of histories such that ch/bh = 1
1+M

is at least equal to D̂(0|H).
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Histories such that ch/bh = 1/(1 + m). (IC) for downward deviation ρ−1 implies that

for all histories h,

(1 + ρ−1)dh,−1 − dh,0 ≤ (dh,−1 − dh,0)
ch
bh
.

Summing over all histories in H, conditions (ĈR) and (O14) imply that

1

|H|
∑
h∈H

(dh,−1 − dh,0)
ch
bh
≥ 1

|H|
∑
h∈H

(1 + ρ−1)dh,−1 − dh,0 =
1

1 +m
(D̂(ρ−1|H)− D̂(0|H))

=
1

|H|
∑
h∈H

(dh,−1 − dh,0)
1

1 +m
.

Since dh,−1 − dh,0 ≥ 0 and ch/bh ≤ 1
1+m

, this implies that whenever dh,−1 − d0,h > 0, then

ch/bh = 1/(1 +m). In addition, for all h, we have that

(1 + ρ−1)dh,1 − dh,0 = (dh,0 − dh,1)
1

1 +m
⇒ dh,0 =

1 + ρ−1 − 1
1+m

1− 1
1+m

dh,−1 = (1− ν)dh,−1

with ν ≡ −ρ−1/(1− 1
1+m

) > 0. Hence, we have that

1

|H|
∑
h∈H

dh,−1 − dh,0 ≤
1

|H|
∑
h∈H

(dh,−1 − dh,0)1dh,−1−dh,0>0 ≤
1

|H|
∑
h∈H

νdh,−11dh,−1−dh,0>0

≤ 1

|H|
∑
h∈H

ν1dh,−1−dh,0>0.

This implies that the share of histories such that ch/bh = 1/(1+m) is greater than 1
ν
(D̂(ρ−1|H)−

D̂(0|H)).

Hence, if D̂(0|H) + 1
ν
(D̂(ρ−1|H) − D̂(0|H)) > 1, then joint upward and downward de-

viations imply strict constraints on the share of competitive histories. For example, if

m = 3%, ρ−1 = −1.5%, D̂(ρ−1|H) = 65% and D̂(0|H) = 25%, then 1
ν
' 1.94, and

D̂(0|H) + 1
ν
(D̂(ρ−1|H)− D̂(0|H)) ' 1.027.

OB.4 Common Values

We now show how to extend the analysis in Section 6 to allow for common values. Because

expected costs conditional on winning now depend on a bidder’s bid, costs and demand

associated with history h ∈ H now take the form (dh,n, ch,n)n∈M, where for each n ∈ M,
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ch,n = E[c|h,∧b−i,h > (1 + ρn)bh] is the bidder’s expected cost at history h conditional on

winning at bid (1 + ρn)bh.

We make the following monotonicity assumption.

Assumption B.1. For all histories h and all bids b, b′, b′′ with b < b′ < b′′, E[c|h,∧b−i,h ∈
(b, b′)] ≤ E[c|h,∧b−i,h ∈ (b′, b′′)].

In words, bidders’ expected costs are increasing in opponents’ bids. This implies that

expected costs ch,n conditional on winning are weakly increasing in the deviation ρn. This

condition on costs follows from affiliation when bidders’ signals are one-dimensional and

bidders use monotone bidding strategies. We now show that, under these conditions, allowing

for common values does not relax the constraints in Program (P).

Note first that, for each deviation n, expected costs conditional on winning (ch,n)n∈M

satisfy:

∀n ∈M, dh,nch,n = dh,0ch,0 + (dh,n − dh,0)ĉh,n, (O15)

where ĉh,n = E[c|h,∧b−i,h ∈ (bh, (1 + ρn)bh)].
44 Our assumptions on costs imply that ĉh,n is

weakly increasing in n.

Consider first downward deviations ρn < 0 (i.e., n < 0). For such deviations, incentive

compatibility constraints hold if and only if

dh,n(1 + ρn)bh − dh,0bh
dh,n − dh,0

≤ ĉh,n.

Consider next upward deviations ρn > 0 (i.e., n > 0). For any such deviation, incentive

compatibility constraints become

ĉh,n ≤
dh,0bh − dh,n(1 + ρn)bh

dh,0 − dh,n
.

Since ĉh,n̂ is weakly increasing in n̂, ĉh,n ≥ ĉh,n′ for all n > 0 and n′ < 0. Hence there exist

costs (ch,n)n∈M satisfying (IC) if and only if

max
n<0

dh,n(1 + ρn)bh − dh,0bh
dh,n − dh,0

≤ min
n>0

dh,0bh − dh,n(1 + ρn)bh
dh,0 − dh,n

. (O16)

Condition (O16) implies that there also exists a constant profile of costs ch,n = ch (i.e. a

private value cost), that satisfies (IC).

44We replace (b, b′) by (b′, b) in the event that b′ < b.
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OC Further Empirical Findings

OC.1 Additional Figures for Section 2

Figure OC.1 illustrates the clustering of bids we highlight in Section 2 more directly. The two

panels of Figure OC.1 plot the sample demand function, D̂(·), for city-level and national-level

auctions. We define the sample demand as follows: D̂(ρ) = 1
|H|
∑

i,a 1bi,a(1+ρ)<∧b−i,a , where

|H| denotes the number of all bids in the dataset. In words, D̂(ρ) is the sample probability

with which bidders win an auction if the bids are changed by a factor of (1 + ρ). For panel

(a), we find that a drop in bids of 2% increases the likelihood of winning by more than

3-fold from 16.3% to 56.9%. For panel (b), we find that a 2% drop in bids also increases the

likelihood of winning by about 3-fold from 10.8% to 33.2%.

(a) city auctions (b) national auctions

Figure OC.1: Sample demand.

Figure OC.2 plots the distribution of differences ∆2 between bids after the lowest bid is

excluded. Formally, let NW (a) denote the set of non-winning bidders in auction a. Then,

∀i ∈ NW (a), ∆2
i,a =

bi,a −minj∈NW (a) bj,a
r

.

Although there is some bunching at exactly zero making the distributions of ∆2 somewhat

irregular, the kernel density estimates show that there is no corresponding missing mass.

Figure OC.3 plots the distribution of bid differences ∆ for the set of auctions whose

prices were not renegotiated up (about 15.3% of the sample). As the figure shows, the
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(a) city auctions (b) national auctions

Figure OC.2: Distribution of bid-difference ∆2 excluding winning bids.

The dotted curves correspond to local (6th order) polynomial density estimates with bandwidth set to 0.0075.

missing mass at ∆ = 0 is just as visible when we focus on this set of auctions. This suggests

that renegotiation does not drive the patterns we document.
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Figure OC.3: Distribution of bid-difference ∆.

National data, auctions with no renegotiation. The dotted curves correspond to local polynomial density
estimates with bandwidth set to 0.0075.

65



OC.2 Additional Findings Related to Section 7.4

This appendix provides sensitivity analysis of the share of competitive histories for the

industries that were investigated for bid rigging by the JFTC to changes in (a) the choice of

confidence level, and (b) the set of deviations considered.

Figure OC.4 presents estimates of the 90% confidence bound on the share of competitive

histories for the three industries we studied in Section 7.4. Relative to the bounds in Figure

7 in Section 7.4, these bounds are obtained using smaller tolerance parameters (xλ)λ∈Λ when

computing set Dα. Under this less conservative bound, firms labeled Floods and Pre-Stressed

Concrete appear to have continued colluding in the period after the investigation.
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(c) Pre-Stressed Concrete

Figure OC.4: 90% confidence bound on share of competitive histories.

Deviations {−0.02, 0, 0.001}; maximum markup 0.5.

Figure OC.5 again presents estimates of the 90% confidence bound on the share of com-

66



petitive histories for the three industries we studied in Section 7.4, but with the set of devi-

ations {−0.02, 0, 0.002}. Relative to the bounds in Figure OC.4, we now only find evidence

of non-competitive behavior for firms labeled Pre-Stressed Concrete in the after period.

The difference between our estimates in Figure OC.4 and Figure OC.5 can be explained

as follows. For Flood auctions occurring after investigation, a .1% upward deviation causes

no change in demand. As a result, our estimate on the share of competitive histories in

the after period are strictly less than 1 when we consider such a small upward deviation.

However, we are worried that this insensitivity of demand to a small upward deviation might

be a mechanical consequence of the small number of observations we have in the after period

for this industry. Indeed, a .2% upward deviation causes a small drop in demand, and our

estimate on the share of competitive histories in the after period is exactly 1 in Figure OC.5.
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Figure OC.5: 90% confidence bound on share of competitive histories.

Deviations {−0.02, 0, 0.002}; maximum markup 0.5.
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OC.3 Relation to the Cover Bidding Screen of Imhof et al. (2018)

One screen of collusion that is closely related to ours is the cover bidding screen proposed

by Imhof et al. (2018). The authors study road construction projects in Switzerland and

document a suspicious bidding pattern for a subset of the auctions in which the difference

between the two lowest bids is substantially larger than the gap between any two losing

bids. Based on this pattern, the authors propose a screen based on a comparison of the gap

between the two lowest bids and the standard error of the losing bids. In particular, they

consider computing the following statistic for each auction,

covert =
b

(2)
t − b

(1)
t

σt
,

where b
(1)
t and b

(2)
t are the lowest and second lowest bids in the auction taking place in period

t; and σt is the standard error of the losing bids in auction t. Imhof et al. (2018) identifies

a subset of auctions in which covert is consistently above 1 and flag them as potentially

uncompetitive. Interestingly, the Swiss competition commission (COMCO) launched an

investigation based partly on the results of this statistical test which led to sanctions against

eight firms.

The distribution of the gap between the two lowest bids determine the elasticity of residual

demand, and hence, the cover bidding screen of Imhof et al. (2018) is related to Proposition

2. Moreover, the distribution of the gap between the two lowest bids determine the upper

bound on costs that must hold under competitive bidding. Together with our upper bound

on markups, the gap between the lowest bids determine how much power upward deviations

have in problem (P) in Section 6. This relates the cover bidding screen to the metric of

competitive behavior introduced in Section 6.

Table OC.1 reports the firm-level bounds on the share of competitive auctions the test

statistic of Imhof et al. (2018). The left panel of the table corresponds to the top 30 firms

in the municipal sample and the right panel corresponds to the top 30 firms in the national

sample. Columns (1)-(4) are the same as in Table 2. In column (5), we report for each firm

the fraction of auctions it participates in, such that covert is above 1. We find that covert is

above 0.5 for all of the firms except one (firm 4 in the sample of national auction). In fact,

except this one firm, we can reject with 95% confidence that covert is equal to 0.5. Hence,

almost all of the firms in our dataset would be considered as somewhat suspicious by the

cover bidding screen.

The overall correlation between the share of competitive histories that we report in col-
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umn (4) and column (5) is essentially zero across both municipal and national data. If we

instead take the correlation between a dummy of whether or not the estimated share of

competitive histories is less than 1 and the statistic in column (5), the two statistics become

more negatively correlated, with a correlation coefficient of -0.18.

A possible reason why the association between the two measures is somewhat weak is

because our measure exploits information from downward deviations as well as from upward

deviations. The metric proposed in Imhof et al. (2018) only captures information from

upward deviations. This may explain why the correlation between the two is not very

strong.45

OC.4 Bounds on Other Moments

This appendix shows how to adapt the approach of Section 6 to obtain robust bounds on

other moments of interest: (i) the share of competitive auctions, and (ii) the total deviation

temptation.

Maximum share of competitive auctions. The bound on the share of competitive

histories provided by Proposition 3 allows some histories in the same auctions to have dif-

ferent competitive vs. non-competitive status. This may underestimate the prevalence of

non-competition in a given dataset. In particular, if one player is non-competitive, she must

expect other players to be non-competitive in the future. Otherwise, if all of her opponents

played competitively, her stage-game best reply would be a profitable dynamic deviation.

For this reason, one might be interested in providing an upper bound on the share of

competitive auctions, where an auction is considered to be competitive if and only if every

player is competitive at their respective histories.

Take as given an adapted set of histories H, corresponding to a set A of auctions. Recall

from Appendix OB that ωH = (ωh)h∈H denotes an environment, with ωh = ((dh,n)n∈M, ch).

Recall further that Ω = {ωH : ∀h ∈ H, (dh,n)n∈M ∈ F} is the set of environments ωH with

feasible demands.

For every environment ωH ∈ Ω, let

Acomp(ωH) ≡ {A′ ⊂ A s.t. ∀a ∈ A′, ∀h ∈ a, (dh, ch) satisfy (IC) and (MKP)}

45Another potential reason is that, for the municipal data, the presence of the public reserve price com-
presses the distribution of the losing bids.
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be the set of competitive auctions under ωH . Consider the following program:

ŝauc = max
ωH

|Acomp(ωH)|
|A|

s.t. ∀n, Dn(ωH , H) ∈
[
D̂(ρn|H)−K, D̂(ρn|H) +K

]
,

where, for each n and each ωH , Dn(ωH , H) = 1
|H|
∑

h∈H dh,n. ŝauc provides an upper bound

to the fraction of competitive auctions.

Total deviation temptation. Regulators may want to investigate an industry only if

firms fail to optimize in a significant way. Our methods can be used to derive a lower bound

on the bidders’ deviation temptation.

Given demand and costs ωH , define

U(ωH) ≡ 1

|H|
∑
h∈H

[
(bh − ch)dh,0 − max

n∈{−n,··· ,n}
[(1 + ρn)bh − ch]dh,n

]
.

Our inference problem now becomes:

D̂T = max
ωH

U(ωH)

s.t. ∀n, Dn(ωH , H) ∈
[
D̂(ρn|H)−K, D̂(ρn|H) +K

]
.

In this case, with probability approaching 1 as |H| gets large, −D̂T is a lower bound for

the average total deviation-temptation per auction. This lets a regulator assess the extent

of firms’ failure to optimize before launching a costly audit. In addition, since the sum of

deviation temptations must be compensated by a share of the cartel’s future excess profits

(along the lines of Levin (2003)), D̂T provides an indirect measure of the excess profits

generated by the cartel.

Figure OC.6 reports estimates for firms in the city of Tsuchiura, as a function of minimum

markup m.

OC.5 Sensitivity to Economic Plausibility Constraints

Figure OC.7 shows that, for our city-level data, our estimates on the share of competitive

histories are insensitive to changes in maximum markup M . Figure OC.8 illustrates the
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Figure OC.6: Total deviation temptation as a fraction of profits, Tsuchiura. Deviations
{−.02, 0, .001}. Maximum markup 0.5.
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Figure OC.7: Share of competitive histories for different maximum markups, city data,
deviations {−0.02, 0, 0.001}.

sensitivity of our estimates to parameter α ∈ [0, 1] in downward deviation IC constraint

(O3) for auctions with re-bidding. Recall that parameter α measures the extent to which a

deviation by a firm in round 1 affects her continuation profits in the following rounds when

the deviation changes the information bidders have in the following rounds.
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Figure OC.8: Share of competitive histories, national-level data. Deviations
{−0.02, 0, 0.001}, M = 0.5.

OD Proofs for Lemmas 1, 2 and 3

Proof of Lemma 1. Let us first establish that problem (P) does admit a solution. Since

F is a compact subset of RM, Prokhorov’s theorem implies the set ∆(F) of distributions

over F is compact under the weak topology. Since Dα is compact and IsComp is upper

semi-continuous, it follows that

sup
µ∈∆(F)

Eµ[IsComp(d)]

s.t. Eµ[d] ∈ Dα

does admit a solution, and the supremum is in fact a maximum. Let us denote by µ̂ this

solution.

Let us denote by C the set of competitive belief profiles d satisfying (IC-MKP), and by

Co the interior of set C, i.e. the set of beliefs d satisfying (IC-MKP) with strict inequalities.

Since Fn0 becomes dense in F as n grows, it follows that Fn0 ∩ Co becomes dense in Co.

Since C is equal to the closure of Co, it follows that Fn0 ∩ Co becomes dense in C.

Pick ε > 0. Since C is compact, it is covered with finitely many balls of radius ε, and since

Fn0 ∩Co becomes dense in C, for n large enough and for all d ∈ C, there exists d′ ∈ Fn0 ∩Co

such that ||d− d′|| ≤ ε, where || · || is the Euclidean distance on RM.

Hence, for n large enough and for every d ∈ supp µ̂ ∩ C we can associate f(d) = d′ ∈
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Fn0 ∩ Co such that ||d− f(d)|| ≤ ε.

Let d¬C ≡ Eµ̂[d |d /∈ C] denote the weighted average of d under µ̂ conditional on

d /∈ C (i.e. d not competitive). For n large enough, there exists f(d¬C) ∈ Fn0 such that

||f(d¬C)− d¬C || ≤ ε.

Similarly, consider the sample demands D̂. For n large enough, we can find f(D̂) ∈ Fn0
such that ||f(D̂)− D̂|| ≤ ε. We assume for simplicity that D̂ 6= d¬C .

Finally consider distributions µn ∈ ∆(Fn0 ) such that

µn ◦ f(D̂) = ν

µn ◦ f(d¬C) = (1− ν)× µ̂(F − C)

∀d ∈ C, µn ◦ f(d) = (1− ν)× µ̂(d)

where ν > 0.46

For each ν > 0, we can find ε > 0 small and N large such that, for all n ≥ N , Eµn [d] ∈ Dα.

In addition, by construction µn ∈ ∆(Fn0 ) and Eµn [IsComp(d)] ≥ (1− ν)×Eµ̂[IsComp(d)] =

(1−ν)ŝcomp. Since ŝncomp ≤ ŝcomp by construction, this implies that limn→∞ ŝ
n
comp = ŝcomp. �

Proof of Lemma 2. Along the lines of the proof of Proposition 1, we define

εt ≡
∑
hi,t

〈
λ,dhi,t − d̂hi,t

〉
and ST ≡

T∑
t=0

εt,

where for each history hi,t, d̂hi,t = (1∧b−i,t>(1+ρn)bi,t)n∈M. ST is a sum of martingale incre-

ments εt whose absolute value is bounded by ||λ||1N t, where ||λ||1 ≡
∑

n∈M |λn| and N t

denotes the number of bidders participating at time t with histories in H.

The Azuma-Hoeffding inequality implies that

prob(ST > xλ|H|) ≤ exp

(
− x2

λ|H|2

2||λ||21
∑T

t=0N
2

t

)
.

Observing that
∑T

t=0N
2

t ≤
∑T

t=0N tNmax = Nmax|H|, this implies that

prob(|ST | > ν|H|) ≤ exp

(
− x2

λ|H|
2||λ||21Nmax

)
.

46If D̂ = d¬C , we can define µn to be such that: µn ◦ f(d¬C) = ν + (1 − ν) × µ̂(F − C), and such that
∀d ∈ C, µn ◦ f(d) = (1− ν)× µ̂(d) .
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This concludes the proof. �

Proof of Lemma 3. As in the proof of Lemma 2, we define

εt ≡
∑
hi,t

〈
λ,dhi,t − d̂hi,t

〉
and ST ≡

T∑
t=0

εt = |H|
〈
λ,Eµ∗ [d]− D̂

〉
.

ST is a sum of martingale increments εt whose absolute value is bounded by ||λ||1Nmax. This

implies that the central limit theorem for sums of martingale increments holds (Billingsley

(1995), Theorem 35.11):

lim
T→∞

prob

(
1

σλ
√
T + 1

ST ≥ x

)
= 1− Φ(x) = Φ(−x)

with

σλ ≡

√√√√√ 1

T + 1

T∑
t=0

var

 ∑
hi,t∈H

〈
λ,dhi,t − d̂hi,t

〉 ∣∣∣h0
t

.
We cannot directly exploit this result to get explicit bounds on the distribution of〈

λ,Eµ∗ [d]− D̂
〉

because dhi,t is not directly observed, so that we can’t form a consistent

estimate of σλ. Instead, we show that

σ̂λ =

√√√√ 1

T + 1

T∑
t=0

|{hi,t ∈ H}|
∑
hi,t∈H

〈
λ, D̂t − d̂hi,t

〉2

.

can be used as an asymptotic upper bound to σλ.

Indeed, for any period t, Jensen’s inequality implies that

var

 ∑
hi,t∈H

〈
λ,dhi,t − d̂hi,t

〉 ∣∣∣h0
t

 = |{hi,t ∈ H}|2var

 1

|{hi,t ∈ H}|
∑
hi,t∈H

〈
λ,dhi,t − d̂hi,t

〉 ∣∣∣h0
t


≤ |{hi,t ∈ H}|

∑
hi,t∈H

var
(〈
λ,dhi,t − d̂hi,t

〉 ∣∣∣h0
t

)
.

Furthermore, since dhi,t = E[d̂hi,t |hi,t], and since hi,t includes all the information provided in
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history h0
t , it follows that for any h0

t -measurable random variable Zt ∈ RM,

var
(〈
λ,dhi,t − d̂hi,t

〉 ∣∣∣h0
t

)
≤ E

[〈
λ, Zt − d̂hi,t

〉2 ∣∣∣h0
t

]
.

The Law of Large Number for martingale increments implies that almost surely,

lim
T→∞

1

T + 1

T∑
t=0

∑
hi,t∈H

E
[〈
λ, Zt − d̂hi,t

〉2 ∣∣∣h0
t

]
−
〈
λ, Zt − d̂hi,t

〉2

= 0.

Hence, setting Zt = D̂t, it follows that for any ε > 0, almost surely as T becomes large,

(1 + ε)σ̂λ ≥ σλ. Since x > 0, this implies that

lim sup prob

(
1

σ̂λ
√
T + 1

ST ≥ x

)
≤ lim sup prob

(
1

σλ
√
T + 1

ST ≥ x(1 + ε)

)
= Φ(−x(1 + ε))

Observing that 1
σ̂λ
√
T+1

ST = |H|
σ̂λ
√
T+1

〈
λ,Eµ∗ [d]− D̂

〉
, Lemma 3 follows from the fact that

the result holds for any ε > 0, and Φ is continuous. �
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