
Conflict and Deterrence under Strategic Risk∗

Sylvain Chassang

Princeton University

chassang@princeton.edu

Gerard Padró i Miquel
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Abstract

We examine the determinants of cooperation and the effectiveness of deterrence
when fear is a motive for conflict. We contrast results obtained in a complete informa-
tion setting, where coordination is easy, to those obtained in a setting with strategic
risk, where players have different information about their environment. These two
strategic settings allow us to identify and distinguish the role of predatory and pre-
emptive incentives as determinants of cooperation and conflict. We show that while
weapons unambiguously facilitate peace under complete information, this does not
hold anymore under strategic risk. Rather, we find that increases in weapon stocks
can have a non-monotonic effect on the sustainability of cooperation. We also show
that under strategic risk, inequality in military strength can actually facilitate peace
and that anticipated peace-keeping interventions may improve incentives for peaceful
behavior.
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1 Introduction

The usual rationale for deterrence is closely related to the rationale behind grim trigger pun-

ishment in a repeated prisoners’ dilemma. Imagine two neighboring groups that repeatedly

decide whether to be peaceful – i.e. to cooperate – or to launch a surprise attack on each

other. A peaceful equilibrium can only be sustained if the short-run gains from a surprise

attack are counterbalanced by the long-run costs of triggering conflict. In this context, if

both groups accumulate weapons, the cost of conflict increases, thereby improving incen-

tives for peaceful behavior. This is the logic of deterrence, which reflects the idea frequently

highlighted in the literature on repeated games that harsher punishments should improve

incentives for cooperation.1 The symmetric accumulation of weapons, insofar as it generates

higher costs of war, should facilitate peace.

This paper examines the limits of this argument by contrasting the mechanics of cooper-

ation and deterrence under complete information and under strategic risk, i.e. when players

do not share a common understanding of their environment. While the complete information

model suggests unambiguous predictions about the effect of weapons on peace, and about

the impact of inequality on cooperation, these predictions need to be considerably nuanced

once strategic risk is taken into account. We develop these points in detail and emphasize the

importance of both predatory and preemptive incentives in determining the sustainability of

cooperation under strategic risk.

We model conflict as a very stylized dynamic exit game, keeping grim-trigger strategies

in a repeated game as a benchmark. In each period, players decide whether to be peaceful

or attack. When both players choose to be peaceful, they enjoy the economic benefits of

peace and the game moves on to the next period. However, if one of the players attacks,

conflict begins and players obtain exogenous continuation values.2 Our model of strategic

1See for instance Abreu (1988) on penal codes. Garfinkel (1990) makes a similar point in the context of
conflict and armament.

2Because the players’ payoffs upon conflict are exogenously specified, this game is not a repeated game.
However, trigger strategies of a repeated game are naturally mapped into an exit game in which continuation
values upon conflict are those that players obtain from repeatedly playing (Attack,Attack). Therefore, this
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risk follows the global games literature.3 More precisely, we consider a situation in which

payoffs upon peace depend on an uncertain state of the world about which players obtain

very informative but noisy signals. Because players do not have the same assessment of

the state of the world, this creates strategic uncertainty in equilibrium. At a state around

which behavior switches, there will be a high probability that one player will choose peace

while the other one attacks. This causes the players to second guess each other’s move, and

significantly affects the sustainability of peace. These effects remain even as the players’

information becomes arbitrarily precise and we approach the complete information case.

Throughout the paper we compare and contrast the conditions under which cooperation is

sustainable in environments with and without strategic uncertainty.

To understand the difference that strategic risk makes, it is important to distinguish

between the two motives for conflict that exist in this game. First, one may be tempted to

attack an otherwise peaceful opponent – this is the predatory motive for conflict. Second,

one may attack to avoid suffering a surprise strike from an opponent who is expected to be

aggressive – this is the preemptive motive for conflict. Under complete information, it is easy

for players to coordinate and only predatory motives matter. Under strategic uncertainty

however, the sustainability of peace depends significantly on both predatory and preemptive

incentives. Because weapon stocks can affect preemptive and predatory incentives differently,

many comparative statics that were unambiguous under complete information become much

more nuanced under strategic risk.

Our first set of results considers symmetric increases in weapon stocks. Under complete

information, increased weapons stocks facilitate peace by diminishing payoffs upon conflict.

Under strategic risk however, the symmetric accumulation of weapons may very well be

destabilizing. Indeed, while weapons diminish predatory incentives, they may increase pre-

emptive incentives if being the victim of a surprise attack is particularly weakening. It follows

exit framework encompasses the insights we obtain from a repeated prisoners’ dilemma. See Chassang
and Takahashi (2009) for a full-fledged analysis of repeated games under related incomplete information
perturbations.

3See for instance Carlsson and van Damme (1993) and Morris and Shin (1998) for seminal work on global
games, and Morris and Shin (2003) for a review.
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that under general conditions the impact of weapons on peace will be non-monotonic. In

particular, very large stocks of weapons (e.g. nuclear stocks sufficiently large to guarantee

mutually assured destruction) will foster peace, whereas intermediate stocks of weapons (e.g.

a few nuclear warheads that could be destroyed by a surprise strike) may be destabilizing.

Our second set of results explores how inequality in military strength affects stability. It

is easy to show that unequal military power is always destabilizing under complete informa-

tion. This is because inequality increases the predatory temptation of the stronger player.

However, inequality reduces the preemptive motive for conflict for two reasons. First, the

stronger player knows she has little to fear from the weaker one and hence she has smaller

preemptive needs. Second, when the strong player is overwhelmingly dominant, the weaker

player can only gain very little by launching a preemptive attack. As a consequence, under

strategic risk, peace might be possible between unequal contenders in circumstances under

which equally armed opponents would fight. This result, however, should not be interpreted

as making a case for complete monopoly of violence. Indeed, while inequality can help, peace

is only sustainable if the weaker player keeps enough weapons to limit the stronger player’s

predatory incentives. This suggests that restrained superiority may sustain the greatest level

of peace.

Finally, we examine the impact of peace-enforcing interventions on peace and conflict.

We first highlight that under complete information, unless intervention is immediate and war

is prevented altogether, intervention will always have a destabilizing impact. Indeed, as in

the familiar case of grim trigger strategies, it is precisely the prospect of a long and painful

conflict that deters players from attacking in the first place. This conclusion, however, is not

robust to strategic risk. By alleviating the potential costs of being the victim of a surprise

attack, intervention reduces preemptive incentives. In that setting we show that the promise

of intervention may promote peace even if it can only happen with delay.

This paper focuses entirely on the impact of strategic risk on the mechanics of deterrence

and peace. As a result, the paper abstracts from a number of other realistic dimensions of

conflict already emphasized in the literature. These include several frictions that induce bar-
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gaining failures, such as imperfect information (see Fearon (1995) or Powell (1999)), leader

bias (see Jackson and Morelli (2007)), and commitment problems (as in Powell (2004) or

Yared (2009)). Also, we do not consider the question of endogenous investment in weapons

and the guns vs butter trade-off (see for instance Grossman (1991), Skaperdas (1992), Es-

teban and Ray (2008), as well as Jackson and Morelli (2009) who examine a model based

on this trade-off that exhibits deterrence). Rather, our purpose here is to revisit a more

primitive question: how does the accumulation of weapons affect the stability of peace?

While our contribution here is mostly applied, this paper also belongs to the recent

theoretical literature on dynamic global games.4 It is closely related to the work of Steiner

(2008), Chassang (2009), Giannitsarou and Toxvared (2009), or Ordoñez (2009), all of which

use a simple dynamic programming approach to simplify the analysis of large global games.

In these papers, as well as in ours, payoff shocks are independent across periods and the

focus is on how incomplete information affects the provision of incentives, rather than on how

players may learn the underlying state of the world. A complementary literature focuses on

such learning by considering dynamic global games in which the state is constant or follows

a random walk. See for instance Chamley (1999), Angeletos, Hellwig and Pavan (2007),

Dasgupta (2007) or Dasgupta, Steiner and Stewart (2008).

Because the exit game we consider can be thought of as a reduced form for trigger

strategies in a repeated game, the basic insights of the paper can be applied in other en-

vironments usually modeled using repeated games. Whenever predatory and preemptive

incentives move in different directions, taking strategic risk seriously will significantly affect

comparative statics. One possible application is the model of price wars during booms of

Rotemberg and Saloner (1986) which shows that collusion is hardest to sustain during times

4It is also useful to relate this paper to some of our other applied work on conflict. In a small extension of
the current paper (Chassang and Padro i Miquel (2009a)), we use the framework developed here to discuss
the relative merit of defensive weapons and defensive alliances as means to sustain peace. In an other recent
paper (Chassang and Padro i Miquel (2009b)) we use a complete information model to discuss the impact
of wealth on conflict in a context where wealth is expropriable. We highlight that it is temporary changes
in wealth, rather than the level of wealth, that determine conflict. We note that in contrast to the current
paper, considerations of strategic risk do not change the intuitions obtained in the complete information
setting.
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of temporary high demand since this is when predatory incentives are maximized. To the

extent that preemptive incentives might be highest when demand is low (failing to react

might put a firm out of business), introducing strategic risk may alter comparative statics.

Similarly, the relational contracting literature (see for instance, Shapiro and Stiglitz (1985),

Bull (1987), Baker, Gibbons and Murphy (1994, 2002), or Levin (2003)) often makes the

point that reducing the players’ outside option facilitates cooperation. This need not hold

anymore in a model with strategic risk if reducing the players’ outside option increases their

incentives to preempt.

The paper is organized as follows. Section 2 describes the framework and provides neces-

sary and sufficient conditions for the sustainability of peace under complete and incomplete

information. Section 3 contrasts the mechanics of deterrence with and without strategic risk.

Section 4 studies how inequality in military strength affects conflict. Section 5 explores the

impact of intervention on peace. Section 6 concludes. Proofs are contained in Appendix A.

2 Framework

2.1 A Simple Class of Cooperation Games

We consider two groups i ∈ {1, 2} that play an infinite horizon trust game, with discrete

time t ∈ N, and share a common discount factor δ. Each period t, players simultaneously

decide whether to be peaceful (P) or attack (A). If both players are peaceful at time t, they

obtain a flow payoff π and the game moves on to period t + 1. When either of the players

attacks, the game enters a conflict mode. Players receive an exogenously specified stream

of payoffs and strategic interaction per-se ends. When player i attacks while −i is peaceful,

she is a first mover and gets a stream of payoffs (fi,n)n≥0, where n denotes the number of

periods elapsed since conflict began.5 If the opposite happens, player i is a second mover

and gets a stream of payoffs (si,n)n≥0. If both players attack at the same time, simultaneous

5i.e. if conflict started at time t, the flow payoff obtained by a first mover i at time t+ n is fi,n.
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war begins and player i gets a stream of payoffs (wi,n)n≥0. We define Fi, Si and Wi the

present discounted values of starting conflict as a first, second or simultaneous mover. More

specifically, we define,

Fi =
+∞∑
n=0

δnfi,n ; Si =
+∞∑
n=0

δnsi,n ; Wi =
+∞∑
n=0

δnwi,n.
6

Throughout the paper Fi, Si and Wi will depend on the respective stocks of weapons ki

and k−i of each player. More specifically, there are functions F, S and W such that,

Fi = F (ki, k−i) , Si = S(ki, k−i) , Wi = W (ki, k−i).

Whenever ki = k−i = k, we use the notation Fi = F (k), Si = S(k) and Wi = W (k). We

maintain the following assumption.

Assumption 1 Payoffs Fi, Si and Wi are increasing in ki and decreasing in k−i. Further-

more, F (k), S(k) and W (k) are all decreasing in k.

This is a fairly natural assumption: conditional on conflict, player i’s payoff is increasing

in her own stock of weapons and decreasing in her opponent’s stock of weapons. Moreover,

a symmetric increase in the amount of weapons makes conflict more painful on all sides.

Throughout the paper, we discuss weapon stocks ki and k−i affect the sustainability of peace

under different informational environments.

In any period t, given continuation values (Vi)i∈{0,1} upon joint cooperation, players can

6 Note that trigger strategies in a repeated game are naturally mapped into this framework. Consider for
instance, in the Prisoners’ Dilemma, with stage game payoffs given by

P A
P π −c
A b 0

where π < b and b− c < 2π so that peace is efficient. Trigger strategies correspond to payoffs upon conflict
fi,0 = b, si,0 = −c, wi,0 = 0 and fi,n = si,n = wi,n = 0 for n > 0.
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be thought of as facing the one-shot game,

P A

P π + δVi Si

A Fi Wi

where payoffs are given for row player i.7 This representation of payoffs allows us to identify

two distinct motives for conflict. The payoff difference Fi − π − δVi corresponds to player

i’s predatory incentives, that is, how much player i would gain from attacking a consistently

peaceful opponent. When players expect permanent peace upon continuation, predatory

incentives take the form Fi− 1
1−δπ. The payoff differenceWi−Si corresponds to the preemptive

incentives of player i, that is, how much player i would gain from attacking an opponent

that is expected to attack. We make the following assumption.

Assumption 2 (early mover advantage) For all i ∈ {1, 2}, Fi > Wi > Si.

Assumption 2 simply states that if conflict occurs, there is an advantage to attacking early.

This assumption is natural in many instances of conflict, including military conflict, conflict

between firms, or even conflict between individuals, as the first mover benefits from additional

time to prepare her moves.

Throughout the paper, we contrast a situation in which the flow benefits of peace π

are common knowledge, and a situation in which players make noisy but precise private

assessments of the value of π. In the first case, common knowledge of payoffs allows players to

coordinate their actions effectively and only predatory incentives matter for the sustainability

of peace. Under incomplete information however, coordination becomes difficult as players

attempt to second guess one another’s value for peace. In that case the sustainability of

peace depends significantly on both predatory and preemptive incentives.

Note that while we emphasize the players’ uncertainty over the common returns to peace

7We look at a situation where the benefits of cooperation π are symmetric for the purpose of simplicity.
Extending the model to a setting with asymmetric benefits presents no conceptual difficulty and simply adds
to the notational burden.
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π, our results would be identical if we consider uncertainty over the returns F from a surprise

attack.8 Indeed, it is uncertainty over predatory incentives F −π−δVi as a whole that drives

our results. Note in addition that unfavorable economic shocks are in fact a major driver of

conflict (see Miguel et al (2004) or Ciccone (2008)).

2.2 The Complete Information Benchmark

In the benchmark complete information setting, payoff π is fixed and common knowledge

among players. We denote by ΓCI the corresponding dynamic game.

Proposition 1 (cooperation under complete information) Peace is (permanently) sus-

tainable in an equilibrium of ΓCI if and only if

∀i ∈ {1, 2}, Fi −
1

1− δ
π ≤ 0. (1)

This means that under complete information, the sustainability of peace depends only on the

magnitude of predatory incentives. Preemptive incentives play no role as neither Si nor Wi

enter condition (1). Note that this condition is analogous to the condition for cooperation

in a Prisoners’ Dilemma under grim trigger strategies. We denote by πCI the smallest value

of π such that inequality (1) holds. Let us turn to the case of strategic risk.

2.3 Strategic Risk

We model strategic risk in equilibrium by allowing players to have different perceptions of

their environment. Although strategies are common knowledge in equilibrium, the fact that

perceptions are private implies that there is no common knowledge of what actions will be

taken. This leads players to try to second guess each other’s next move in order to avoid

suffering a surprise attack. This second guessing is closely related to the idea of “reciprocal

8See Chassang (2009) for a general framework in which perturbations can affect all entries of the payoff
matrix.
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fear of surprise attacks” developed by Schelling (1960). We are ultimately interested in

determining when such thought processes lead to an unraveling of peace.9

We consider an environment in which the returns to peace are not common knowledge.

Specifically, we follow the framework of Chassang (2009) and consider the slightly perturbed

exit game with flow payoffs

P A

P π̃t Si

A Fi Wi

where π̃t is an i.i.d. random variable with finite variance, distribution g and support

(−∞,+∞). The payoff of cooperation π̃t is not directly observable by the players when they

make their decision at time t. Instead, players observe signals of the form xi,t = π̃t + σεi,t

where {εi,t}i∈{1,2}, t∈N is an i.i.d. sequence of centered errors with support [−1, 1], and σ > 0.

For simplicity we assume that π̃t is observable in period t + 1 via the flow payoffs. Let us

denote this game by Γσ,g.

To perform a robustness check on the complete information environment we are interested

in the sustainability of peace in Γσ,g as first, σ goes to 0, and second, g approaches a point

mass at π.10 This corresponds to an environment where players have approximately complete

information about the state of the world, but remain uncertain about whether they are more

or less optimistic than the other player. Analysis is facilitated by the fact that given a

distribution g, as σ becomes small, game Γσ,g admits a most peaceful equilibrium sHσ,g which

sustains the highest equilibrium values VH
σ,g. Equilibrium sHσ,g also takes a simple threshold

form, i.e., there exists (xHi,σ,g)i∈{1,2} ∈ R2 such that player i plays peace whenever she gets a

signal xi,t ≥ xHi,σ,g and attacks otherwise.11

9For a related model of reciprocal fears see Baliga and Sjoström (2004).
10Note that the order of limits we take is important. By taking σ to 0 first, we insure that the players

always care about their private information, so that there is indeed second guessing and strategic risk. When
we take the other order of limits, the players have such strong priors that they regard their private signals
as completely noisy and we are essentially back in the complete information setting.

11See the appendix for more formal statements and proofs. It is important to note that we do not restrict
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Before characterizing this most peaceful equilibrium in the limit case where players have

very precise information, it is useful to delineate why a small amount of incomplete infor-

mation can radically affect equilibrium behavior. For this purpose let us focus on the case

where payoffs and signalling structures are symmetric. In that setting, the most peaceful

equilibrium is symmetric with both players using the same threshold xHσ,g. With σ small,

a player that gets a signal well below or well above xHσ,g has little uncertainty about her

opponent’s behavior. The likelihood of surprise attacks is small. However, when a player

gets as a signal the threshold xHσ,g, then there is roughly probability a half that her opponent

got a higher signal and probability a half that her opponent got a lower signal. This means

that an equilibrium threshold must be such that at that state of the world, a player is willing

to be peaceful even though there is probability roughly a half that her opponent will launch

a surprise attack. Note that in aggregate, the overall probability of a surprise attack maybe

vanishing. What matters is that conditional on being at an equilibrium threshold, there is

a high likelihood of an attack. This is why a small amount of incomplete information can

significantly affect the way players interact even though, in aggregate, surprise attacks are

quite rare.

We now characterize explicitly when peace can be sustained under strategic risk. For this

purpose we introduce some notation. Given any pair V = (Vi, V−i) of continuation values,

we consider the following 2×2 game G(V)

P A

P π + δVi Si

A Fi Wi,

where payoffs are given for row player i. Following Harsanyi and Selten (1988), we say that

attention to threshold-form strategies. Rather, we prove that game Γσ,g admits a most peaceful equilibrium,
and that this equilibrium is necessarily in threshold-form strategies.
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(Peace, Peace) is risk-dominant in game G(V) if and only if

∏
i∈{1,2}

(π + δVi − Fi)+ >
∏

i∈{1,2}

(Wi − Si) .

Inversely, we say that (Attack,Attack) is risk-dominant if the opposite strict inequality holds.

We also denote by

V ≡ 1

1− δ
π

the value of permanent peace. We can now state the main result of this section, which we

use throughout the paper. Recall that VH
σ,g denotes the highest equilibrium pair of values in

game Γσ,g. It is supported by the most cooperative equilibrium.

Proposition 2 (cooperation under strategic risk) For any sequence {gn}n∈N such that

for all n ∈ N, gn has support (−∞,+∞) and {gn}n∈N converges in mean to the unit mass

at π, the following hold:

(i) Whenever (Peace, Peace) is risk-dominant in game G(V , V ), then permanent

peace is sustainable under strategic risk, in the sense that

lim
n→∞

lim
σ→0

VH
σ,gn =

(
V , V

)
.

(ii) Inversely, whenever (Attack,Attack) is risk-dominant in game G(V , V ), then

peace is unsustainable under strategic risk, in the sense that

lim
n→∞

lim
σ→0

VH
σ,gn = (Wi,W−i).

Proposition 2 provides a convenient criterion to check whether peace is sustainable under

strategic risk. Point (i) shows that when (Peace, Peace) is risk-dominant in G(V , V ), then

the highest sustainable equilibrium value in Γσ,g converges to the value of permanent peace

V , which implies that the most cooperative equilibrium of Γσ,g sustains approximately per-
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manent peace. Inversely, point (ii) shows that when (Attack, Attack) is risk dominant, then

the values associated with the most cooperative equilibrium of Γσ,g converge to the value of

immediate conflict. This implies that permanent conflict is the only equilibrium sustainable

under strategic risk. Altogether, points (i) and (ii) imply that peace is robust to strategic

risk if and only if ∏
i∈{1,2}

(
1

1− δ
π − Fi

)+

>
∏

i∈{1,2}

(Wi − Si) (2)

where (z)+ ≡ max{0, z}. Let us denote by πSR the smallest value of π such that (2) holds.12

Condition (2) shows that just as under complete information, it is necessary that both

players’ predatory incentives (Fi− 1
1−δπ) be negative to sustain peace.13 In addition, condition

(2) emphasizes the role of preemptive incentives (Wi−Si). The larger preemptive incentives

are, the harder it is to sustain peace. When payoffs are symmetric, peace is sustainable under

strategic risk if and only if F − 1
1−δπ+W −S < 0, i.e. peace is sustainable if and only if the

sum of predatory and preemptive incentives is negative. As Sections 3, 4 and 5 show, there

will often be a conflict between minimizing predatory incentives and minimizing preemptive

incentives. As a consequence, taking strategic risk seriously can refine in important ways

our understanding of cooperation and conflict.

From a modeling perspective, we consider the limit where the distribution g of returns

from peace π̃t becomes concentrated around a given value π both for the purpose of tractabil-

ity and because it allows us to focus exclusively on the role of preemptive incentives in

determining the players’ ability to cooperate. A drawback of taking this limit is that in

our model, conflict either begins in the first period (if (Peace, Peace) is not risk-dominant

in G(V , V )), or the likelihood of conflict in finite time is zero (if (Peace, Peace) is risk-

dominant in G(V , V )). It is not difficult to resolve this problem since our analysis extends

12Note that the equilibrium in which players always attack is always robust to strategic risk. In fact,
“attacking always” is an equilibrium of Γσ,g for all σ and all g. As Chassang (2009) notes, in games with
an infinite horizon, the global games perturbation cannot be used as a trick to select a unique equilibrium.
Rather, the global games perturbation serves as a model of strategic risk in equilibrium that introduces
preemption as a motive for conflict.

13Indeed, since Wi − Si > 0, Condition (2) holds only if 1
1−δπ − Fi > 0 for i ∈ {1, 2}.
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easily to circumstances where information is precise but the distribution g is not degenerate

(see Chassang (2009)). In that case, the most peaceful equilibrium will still be in threshold

strategies, but there will be some probability of conflict in each period depending on whether

the realized return to peace π̃t is above the threshold or not. Most importantly, the equilib-

rium threshold will still be determined by risk-dominance concerns and the broad qualitative

points we make in the paper would be unchanged. However, because payoffs upon conflict

would now enter continuation values upon peace and change the potential surplus available

in the game, the analysis would become richer and obscure the role played by preemptive

incentives.

3 Deterrence with Symmetric Weapon Stocks

3.1 General Results

This section investigates how a symmetric increase in weapon stocks affects the sustainability

of peace by studying the comparative statics of thresholds πCI and πSR. These thresholds

correspond respectively to the minimum flow returns to peace π necessary for peace to be

sustainable under complete information and under strategic risk. This implies that the lower

πCI and πSR are, the easier it is to sustain peace. We say that weapons are deterrent if and

only if the symmetric accumulation of weapons reduces the minimum value of π required to

sustain peace.

The following proposition describes how the deterrent effect of weapons may differ across

strategic settings. Recall that payoffs upon conflict Fi, Si and Wi depend on the players’

respective weapon stocks, ki and k−i. In addition, when weapon stocks are symmetric, i.e.

ki = k−i = k, then all payoffs upon conflict are decreasing in k.

Proposition 3 (deterrence under complete and incomplete information) Consider

a situation in which ki = k−i = k. We have that

(i) πCI is always strictly decreasing in k.
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(ii) πSR is strictly decreasing in k if and only if

dF

dk
+

dW

dk
− dS

dk
< 0. (3)

Point (i) of Proposition 3 highlights that in a complete information setting, increasing

weapon stocks unambiguously improves the sustainability of peace. This happens because

under complete information, peace is sustainable if and only if the payoff F of a first mover

attack is lower than the value of permanent peace 1
1−δπ. Because accumulating weapons

decreases F , it facilitates the sustainability of peace by reducing predatory incentives. This

holds independently of how weapons stocks affect W or S.

This prediction does not necessarily hold anymore once strategic risk is taken into ac-

count. Indeed, as point (ii) of Proposition 3 shows, the effectiveness of weapons as deterrent

depends on their effect on preemptive incentives. If second movers suffer especially when

weapon stocks increase, i.e. if dS
dk

is large and negative, the accumulation of weapons will

increase preemptive incentives. As a consequence, whenever the value S of being a second

mover falls more sharply than the value W of simultaneous war and the value F of initiating

conflict, an increase in weapons will be destabilizing.14 To make the discussion more specific

and flesh out condition (3) we introduce the following benchmark model.

3.2 A Benchmark Model of Payoffs upon Conflict

Most of the results given in the paper can and will be stated in terms of reduced form payoffs

F , W and S. However, we find it useful for intuition to have a benchmark model of payoffs

upon conflict.

14Note that our interest here lies in the particular channel by which comparative statics in the benchmark
model are overturned. There are many ways to change the complete information model so that larger
symmetric weapon stocks are destabilizing. Consider for instance a complete information model where
conflict occurs on the equilibrium path. Increasing weapon stocks may reduce continuation values upon
peace more than it reduces the value of initiating conflict. In that model, increasing weapon stocks increases
predatory incentives and preemptive incentives play no role. In contrast, a more refined prediction specific
to our model with strategic risk is that changes in payoffs which reduce predatory incentives but increase
preemptive incentives may in fact make cooperation harder.
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Definition 1 (benchmark payoffs) Payoffs upon conflict F , S and W are as follows

(i) W (ki, k−i) = ki
ki+k−i

m−D(k−i).

(ii) F (ki, k−i) = W (ρFki, ρSk−i) and S(ki, k−i) = W (ρSki, ρFk−i)

where ρF > 1 > ρS ≥ 0.

The first term of W (ki, k−i) is a classic contest function.15 It corresponds to the idea

that players are competing for a prize m, and that the likelihood of obtaining m depends on

the relative stocks of arms. The second term D : R+ → R+ is a continuously differentiable

increasing function that represents the amount of destruction incurred by player i upon

conflict, independent of whether she wins prize m or not. We capture first mover advantage

by allowing weapon stocks to be inflated or deflated by factors ρF and ρS depending on

the timing of attacks. When weapon stocks are (ki, k−i) and player i unilaterally initiates

conflict, it is as if players were engaged in a simultaneous conflict where weapon stocks are

(ρFki, ρSk−i). The difference ρF − 1 is positive and measures the increased effectiveness

of a first mover’s arsenal. We refer to ρF − 1 as the first mover advantage. The difference

1−ρS is also positive and measures the decreased effectiveness of the second mover’s arsenal.

We refer to 1 − ρS as the second mover’s disadvantage.16 Note that payoffs F , S and W

corresponding to this benchmark model satisfy Assumptions 1 and 2.

As of now we do not specify D any further, but we think of it as bounded (in the

event of complete destruction, the amount of weapons used in the process does not change

payoffs). The damage function D may also display convex parts. This may be because the

way weapons are used changes as k increases (a team of ten soldiers with guns may cause

more damage than ten times the damage of an individual soldier), or because the nature

of weapons changes as k increases (for instance, rifles may be replaced by machine guns).

Altogether, the typical damage function we envision is bounded with S-shaped portions.

15See for instance Hirshleifer (1995).
16Note that upon conflict, the payoffs of a first mover depend on the magnitude of both first mover

advantage and second mover disadvantage.
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3.3 Deterrence in the Benchmark Model

To better understand the circumstances in which weapons will be destabilizing, we now

examine the meaning of condition (3) when payoffs upon conflict are those of our benchmark

model. The threshold πSR takes the form

πSR = (1− δ)[F +W − S]

= (1− δ)[W (ρFk, ρSk) +W (k, k)−W (ρSk, ρFk)]

= (1− δ)
[

1

2
m+

ρF − ρS
ρF + ρS

m−D(ρSk)−D(k) +D(ρFk)

]
.

Weapons are deterrent under strategic uncertainty if and only if

dπSR
dk

= −(1− δ)[ρSD′(ρSk) +D′(k)− ρFD′(ρFk)] < 0;

accumulating weapons is counter-productive otherwise. The derivative dπSR
dk

characterizes

the destabilizing impact of marginal weapons. If it is positive and large, additional weapons

will make it much harder to sustain peace. If it is negative and large, then additional weapons

facilitate the sustainability of peace.

We are now interested in how the first strike advantage ρF − 1 and the second strike

disadvantage 1− ρS may affect the sign and magnitude of dπSR
dk

, i.e. the destabilizing impact

of weapons. Fact 1 shows that under reasonable conditions a large first mover advantage

and a large second mover disadvantage increase the destabilizing impact of weapons.

Fact 1 If D is weakly convex over the range [ρSk, ρFk], then dπSR
dk

is increasing in ρF and

decreasing in ρS.

Fact 1 states that whenever the damage function D is weakly convex over the range

[ρSk, ρFk], then a large first strike advantage and a large second strike disadvantage will

make weapons more destabilizing. Consider the case of a linear damage function D: if

first mover advantage and second mover disadvantage are large, then when weapon stocks
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increase the amount of destruction suffered by second movers rises faster than the amount

of destruction suffered by a first mover. The greater the first mover advantage, the greater

this discrepancy and the more likely it is that weapons are destabilizing. Whenever D is not

linear, this reasoning needs to be qualified. Indeed if the damage function is very concave,

an increase in first mover advantage ρF may reduce the marginal impact of weapons on

second mover damages D(ρFk) to the point where ρFD
′(ρFk) < D′(k). This would reduce

the destabilizing impact of weapons. Conversely, if the damage function D is convex over

the range [ρSk, ρFk], the destabilizing effects of first strike advantage and second strike

disadvantage are magnified.

Interestingly, because the deterrent effect of weapons depends on the local shape of the

destruction function D, the marginal effect of weapons will depend on existing weapon

stocks. As a consequence, our model can generate rich comparative statics. In the following

subsection, we highlight that under reasonable assumptions our model predicts that large

stocks of weapons (i.e. enough to guarantee mutually assured destruction) are deterrent,

while intermediate stocks of weapons (i.e. enough to cause damage, but small enough to be

wiped by a surprise strike) may be destabilizing.17

3.4 Mutually Assured Destruction and Incapacitating Strikes

This section explores the possibility that different levels of weapons may have different

deterrent effects. We introduce the following assumption.

Assumption 3 (Mutually Assured Destruction (MAD)) As weapon stocks become large,

the payoff difference between being a second mover and simultaneous conflict is minimized:

lim
k→+∞

W (k)− S(k) = inf
k≥0

W (k)− S(k).

17Another question concerns the deterrent impact of defensive versus offensive weapons. See Chassang
and Padró i Miquel (2009a) on the subject.
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This assumption corresponds to the idea that when weapon stocks are large, destruction is

unavoidable and the benefits from preemption are minimized. This assumption is weaker

than what is typically understood by mutually assured destruction. In its more narrow sense,

mutually assured destruction would correspond to the assumption that limk→+∞ F (k) =

limk→+∞W (k) = limk→+∞ S(k) = infk≥0 S(k). In that case, when weapon stocks are large,

destruction is so complete that payoffs upon conflict are independent of who initiated the

first attack. Clearly, we have that limk→+∞W (k) − S(k) = 0 = infk≥0W (k) − S(k), so

that Assumption 3 holds. Whenever Assumption 3 holds both predatory and preemptive

incentives are minimized when weapon stocks become large. This yields the following result.

Fact 2 (MAD and stability) If Assumption 3 holds, peace is most sustainable under strate-

gic risk (or complete information) when the stock of weapons becomes arbitrarily large. More

formally

lim
k→+∞

πSR(k) = inf
k≥0

πSR(k).

Note that the benchmark model of Section 3.2 satisfies Assumption 3 whenever the destruc-

tion function D is bounded above. In such a situation, when weapon stocks are symmetric,

sufficient destructive power will guarantee the highest possible level of peace independently

of whether there is strategic risk. Note that this does not imply an ambiguous statement

about welfare. Indeed if we are in a situation where returns are low compared to threshold

πSR, then increasing weapon stocks does not change the fact that conflict will occur anyway

and only reduces the players’ welfare.

Fact 2 also does not imply that weapons monotonically increase stability in a world with

strategic risk. In fact we now present a stark example highlighting how convexities in the

destruction function D may cause intermediate stocks of weapons to be destabilizing.

Assumption 4 (disruptive weapons) There exists a weapon level k∗ such that

D′(ρFk
∗) = +∞ and for all k 6= ρFk

∗, D′(k) < +∞. (4)
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Note that Assumption 4 is consistent with Assumption 3. This would be the case if the

damage function D is bounded and S-shaped with a sharp inflexion point at ρFk
∗. The stock

k∗ corresponds to a level of weapons at which the marginal damages ρFD
′(ρFk

∗) caused by

a first mover are much larger than the marginal damage ρSD
′(ρSk

∗) caused by a second

mover. Intuitively this corresponds to a level of weaponry where incapacitating strikes are

possible. For instance, consider a situation where each party owns a few destructive weapons

(airplanes, nuclear warheads...), which could be potentially wiped out by a surprise strike.

Whenever the stock of weapons is close to k∗, increasing the stock of weapons will reduce

the sustainability of peace.

Fact 3 (disruptive weapons precipitate conflict) Whenever Assumption 4 holds, there

exists an open interval I ⊂ R containing k∗ such that πSR is strictly increasing in k over I.

While Assumption 4 facilitates the statement of Fact 3, the assumption that D′(ρFk
∗) be

infinite for some stock of weapons k∗ is by no means necessary. For instance, if the damage

function D is S-shaped with a sufficiently steep inflexion point a similar result would hold.

Altogether, these results suggest that the relationship between peace and weapon stocks

may be non-monotonic. Indeed under Assumptions 3 and 4 very large stocks of weapons

ensuring MAD will facilitate peace, while intermediate stocks of weapon may precipitate war

if incapacitating attacks are possible.

4 Stabilizing Asymmetry

In the previous section we analyzed the case of contenders with equal weapon stocks. We

now turn to the question of how asymmetry in military strength affects the sustainability of

peace. Asymmetry is parameterized by a constant λ ∈ [1,+∞) so that ki = λk and k−i = k.

As λ becomes large, one player becomes arbitrarily stronger than the other.18 Let us denote

18Note that starting from a symmetric pair of weapon stocks (k, k), the transition to any pair (ki, k−i) with
k−i ≤ ki can be decomposed as a symmetric move to (k−i, k−i) (which we studied in Section 3) followed
by an asymmetric increase of the stronger player’s weapon stock (of the kind we study now) to the pair
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by ∆i
pred ≡ Fi − 1

1−δπ player i’s predatory incentives and by ∆i
preempt ≡ Wi − Si player i’s

preemptive incentives.

A marginal increase in the relative stock of weapons λ affects predatory and preemptive

incentives as follows

d∆i
pred

dλ
= k

∂Fi
∂ki

> 0 (5)

d∆−ipred
dλ

= k
∂F−i
∂ki

< 0 (6)

d∆i
preempt

dλ
= k

[
∂Wi

∂ki
− ∂Si
∂ki

]
(7)

d∆−ipreempt
dλ

= k

[
∂W−i
∂ki

− ∂S−i
∂ki

]
. (8)

Equations (5) and (6) show that as asymmetry in military strength increases, the predatory

temptation of the stronger player increases, while the predatory temptation of the weaker

player decreases. We obtain the following result.

Proposition 4 (asymmetry is bad under complete information) Keeping k constant,

greater asymmetry makes peace harder to sustain under complete information. Formally, πCI

is strictly increasing in λ.

Indeed, under complete information, condition (1) implies that the sustainability of peace

is entirely determined by the predatory incentives of the stronger player. As equation (5)

shows, these are unambiguously increasing with respect to λ.

Because we keep the weapon stock of the weaker country constant, greater values of

λ are associated with both greater asymmetry and greater total weapon stocks (λ + 1)k.

It is useful to highlight the role played by asymmetry rather than total weapon stocks.

Here, as asymmetry and total weapon stocks increase, the sustainability of peace diminishes

(under complete information). This contrasts with Section 3 where players have identical

weapon stocks and symmetric increases in total weapon stocks 2k unambiguously increase the

(ki, k−i).
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sustainability of peace (under complete information). The reason why we keep the weapon

stocks of the weaker country constant will be clarified shortly.

As equations (7) and (8) highlight, the effect of inequality on preemptive incentives

can be ambiguous for both players, since ∂Wi

∂ki
and ∂Si

∂ki
have the same sign. In particular

the following proposition shows that under reasonable conditions, increasing inequality will

reduce the preemptive incentives of both players.

Proposition 5 (appeasing inequality) Assume that conflict payoffs Fi, Si and Wi are

generated by the benchmark model of Definition 1.

(i) If D is bounded above then

lim
λ→+∞

∆i
preempt = inf

λ≥1
∆i
preempt and lim

λ→+∞
∆−ipreempt = inf

λ≥1
∆−ipreempt.

(ii) If D(k′) is concave for k′ > λk then ∆i
preempt and ∆−ipreempt are decreasing in

λ over [λ,+∞).

Point (i) states that when damage D is bounded above, then arbitrarily large inequality will

minimize the preemptive incentives of both players. Point (ii) provides a local version of this

result and shows that when D is concave, preemptive incentives are decreasing in inequality.

The reasons why the players’ incentives to launch preemptive attacks can diminish with

inequality λ are intuitive. The stronger player’s incentives to preempt diminish because

she gets a share of the spoils close to 1 whether she acts second or simultaneously. The

weaker player’s incentives to launch preemptive attacks also diminish because, when fighting

an overwhelmingly stronger opponent, she faces complete destruction and obtains similar

payoffs whether she is a second mover or attacks simultaneously. Proposition 6 now shows

that this effect is strong enough that in some circumstances peace is sustainable only when

weapon stocks are sufficiently unequal.19

19Appendix B provides a complementary example in which peace is sustainable if weapon stocks are large
and asymmetric, but not sustainable if weapon stocks are large and symmetric.
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Proposition 6 (stabilizing asymmetry) Assume that conflict payoffs Fi, Si and Wi are

generated by the benchmark model of Definition 1 and that D is bounded above. Whenever

1

1− δ
π <

[
1

2
+
ρF − ρS
ρF + ρS

]
m−D(ρSk)−D(k) +D(ρFk) (9)

and
1

1− δ
π > m−D(ρSk) (10)

then, under strategic risk, peace is unsustainable for λ = 1 but sustainable for λ = +∞.

Note that inequalities (9) and (10) can hold simultaneously since D(ρFk) − D(k) > 0 and

(ρF − ρS)/(ρF + ρS) approaches 1 when ρF is large compared to ρS.

Proposition 6 provides conditions under which peace is not sustainable if both players

have the same stock of weapons k but becomes sustainable if one of the players becomes

overwhelmingly strong.20 Condition (9) ensures that peace is not sustainable under strategic

risk when λ = 1. This simply corresponds to the negation of condition (2) for our benchmark

model. Condition (10) implies that when a player becomes arbitrarily strong, predatory

attacks remain unattractive. When these conditions hold together, peace is sustainable only

if players are sufficiently unequal.

Note that the term D(ρFk) − D(k), corresponding to the strong player’s preemptive

incentives, does not appear in inequality (10). Indeed, because the preemptive incentives

∆−ipreempt of the weaker players go to 0, peace is approximately dominant for the weaker

player and strategic risk no longer affects the players’ behavior. The only term that matters

now corresponds to the predatory temptation of the stronger player. This highlights two

important points. First, asymmetry can be stabilizing because it rules out preemption as

a motive for conflict. Second, for asymmetry to be beneficial, it is still necessary for the

weaker party to keep sufficient military capacity that predatory attacks are unattractive

for the stronger player. This is the reason why we focus on comparative statics that keep

the weapon stocks of the weaker party constant. Altogether, Proposition 6 suggests that

20For a given k and ρF , there is always a ρS small enough such that these two conditions hold simultane-
ously for a range of π.
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restrained superiority may guarantee the highest level of peace. This relates to, but qualifies,

the idea that a monopoly of violence facilitates peace. A natural question, which we discuss

a little further in Appendix B, is whether one of the players may willingly give up some of

its weapons to improve the sustainability of peace.

5 Conflict and Intervention

This section explores the impact of peace-keeping interventions on the sustainability of

peace.21 First, note that if peace-keeping interventions reestablished peace immediately,

it is clear they would be beneficial. However, problems arise if peace-keeping operations can

only reestablish peace with some delay. Indeed, a complete information model would predict

that delayed peace-keeping operations are in fact destabilizing.22 We show that this need

not be the case anymore under strategic risk.

To understand whether late intervention can be effective, it is important to unbundle

payoffs upon conflict as a discounted sum of flow payoffs, and consider how the timing

of third-party peace-enforcing interventions affects peace and conflict. For simplicity, we

consider the case of symmetric weapon stocks, so that

F =
+∞∑
n=0

δnfn ; S =
+∞∑
n=0

δnsn ; W =
+∞∑
n=0

δnwn

where {fn}n∈N, {sn}n∈N and {wn}n∈N are exogenously given streams of payoffs upon conflict,

and n denote the number of periods elapsed since the initiation of conflict. We extend

Assumption 2 so that flow payoffs satisfy fn ≥ wn ≥ sn for all n ∈ N. Peace keeping

interventions are characterized by a number of periods N , which is the delay after which

players anticipate that conflict will be interrupted. Some settlement is then imposed and

21Note that we never consider the opportunity cost or direct social benefit of such peace-keeping operations,
but rather focus on how they affect peace and conflict. Although we do not endeavor to do a full-fledged
welfare assessment of interventionist policies, we think of our analysis as an important input for such an
assessment.

22In the sense that they increase the minimum returns to peace π necessary to sustain peace.
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players obtain flow payoffs π′ < π from then on. Hence, if intervention occurs with delay

N ≥ 1, players’ payoffs upon civil war are

FN =
N−1∑
n=0

δnfn +
δN

1− δ
π′ ; SN =

N−1∑
n=0

δnsn +
δN

1− δ
π′ ; WN =

N−1∑
n=0

δtwn +
δN

1− δ
π′.

When intervention occurs N periods after the initiation of conflict, the minimum returns to

peace π such that peace is sustainable under complete information is

πNCI = (1− δ)
N−1∑
n=0

δnfn + δNπ′. (11)

Note that limN→+∞ π
N
CI = πCI . We make the following assumption.

Assumption 5 (conflict as punishment) We assume that f0 > π and for all n ≥ 1,

fn < π′.

This corresponds to a type of war in which there are short-term benefits to attacking (looting,

social prestige. . . ) followed by painful conflict payoffs (guerrilla and retaliation). This is

also the pattern of flow payoffs upon conflict generated by trigger strategies in the repeated

Prisoner’s Dilemma with stage game payoffs

P A

P π −c

A b 0

where π < b and b− c < 2π so that peace is efficient. Under trigger strategies, flow payoffs

upon conflict for a first mover are f0 = b > π and for n > 0, fn = 0 < π′.

The following result shows how expected intervention affects the sustainability of peace

under complete information.

Proposition 7 (intervention under complete information) Consider the complete in-
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formation game in which intervention occurs at time T . The following hold:

(i) whenever N = 0, πNCI = π′ < π, i.e. peace is always sustainable;

(ii) whenever N ≥ 1, then πNCI is decreasing in N and πNCI > πCI .

Point (i) of Proposition 7 highlights that if intervention were immediate, then peace would

be sustainable for any value of π. This happens because a first mover attacker never gets

the one-shot benefit f0 and only ever gets settlement payoffs π′ < π. Point (ii) shows

that in contrast, anticipating a delayed intervention is always destabilizing under complete

information. Moreover, it shows that if it is only feasible to intervene with some delay, then

postponing intervention improves the sustainability of peace, to the point that committing

not to intervene induces the highest level of peace. The intuition is clear: peace in this model

is sustained by the perspective of a long, drawn-out and painful war. An intervention stops

such wars and hence increases predatory incentives.

We now examine the impact of intervention under strategic risk. The minimum value of

π for which cooperation is sustainable is

πNSR = (1− δ)
N−1∑
n=0

δn(fn + wn − sn) + δNπ′.

Proposition 8 (intervention under strategic risk) If intervention occurs at time N ,

the following hold:

(i) whenever N = 0, πNSR = π′ < π, i.e. peace is always sustainable,

(ii) for any N ≥ 1, the cooperation threshold under strategic risk πNSR is increas-

ing in N if and only if fN + wN − sN > π′.

Point (ii) of Proposition 8 highlights that even when only delayed intervention is feasible,

expecting intervention can facilitate peace. This occurs because under strategic risk, inter-

vention affects the sustainability of peace via two channels. On the one hand, it replaces
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future flow predatory payoffs fn by π′. This is destabilizing as it increases predatory incen-

tives (fn < π′). On the other hand, intervention replaces flow preemptive incentives wn− sn

by 0. This is stabilizing because it improves the situation of the victim of a surprise attack,

thereby reducing preemptive incentives. Whenever fn+wn−sn > π′, the second effect dom-

inates and the promise of intervention – even delayed – improves the sustainability of peace.

The following corollary reinterprets these results in the specific case where flow payoffs wn

upon simultaneous conflict are constant.

Fact 4 (converging and diverging conflicts) Assume that for all t ≥ 0, wn = w0. We

have that

(i) if fn − sn is increasing in n for all n ≥ 0, then πNSR is increasing in N and

πNSR < πSR;

(ii) if fn − sn is decreasing in n for all n ≥ 0 and there exists N∗ such that

fN∗ + wN∗ − sN∗ ≤ π′, then for all N ≥ N∗, πNSR is decreasing in N .

Point (i) of Corollary 4 states that when flow payoffs between first and second movers diverge

with time, even the promise of delayed intervention at some time N will improve the stability

of peace. Furthermore when delay is unavoidable, intervention should still occur as early as

possible. This corresponds to a setting where the first mover advantage and second mover

disadvantage are durable, so that war becomes worse and worse for the victim of the first

attack. In contrast, point (ii) of Corollary 4 states that whenever flow payoffs between first

and second movers converge – in other words, when the victims can effectively retaliate – then

only the promise of sufficiently early intervention can foster peace. If intervention cannot

occur before some delay N∗, intervention unambiguously reduces the stability of peace. In

this second case the intuition obtained under complete information survives. If intervention

can only happen with delay greater than N∗, then increasing such delay (or abstaining from

intervening altogether) will improve the chances of peace. This suggests that intervention is

most suited when conflicts follow a diverging pattern.
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6 Conclusion

This paper contrasts the mechanics of conflict with and without strategic risk. It shows

that under complete information, the sustainability of peace depends only on the players’

predatory incentives. Under strategic risk, however, the sustainability of peace depends both

on predatory and preemptive incentives. Taking strategic risk seriously highlights the role

of fear – rather than just greed – as a determinant of cooperation and conflict. This changes

intuitions about deterrence and intervention in a number of ways. We focused on three

particular insights.

First, while weapons are deterrent under complete information, this need not be the

case under strategic risk. Indeed, while weapons diminish the players’ temptation to launch

predatory attacks, they may also increase the urgency to launch preemptive attacks. As a

result we show that weapons need not always be deterrent. We show that under natural

conditions, sufficiently large stocks of weapons will be deterrent, while intermediary stocks

of weapons may be destabilizing. In particular we highlight the danger of holding stocks of

weapons that allow for incapacitating strikes, i.e. levels of weapons such that second movers

are hurt much more than first movers in times of conflict.

Our second set of results pertains to the impact of unequal military strength on conflict.

We show that under strategic risk, inequality may very well facilitate the sustainability of

peace. Indeed, while inequality always increases one of the players’ predatory temptation, it

may also decrease both players’ preemptive incentives. As a result peace may be sustainable

if groups are unequal, and unsustainable if groups are equal. The model, however, does

not imply that a monopoly of violence sustains the highest level of peace. Indeed, it is

necessary in our framework that the weaker party keep sufficient weapon stocks to dissuade

the stronger party from unilateral attacks. This result suggests that policies that attempt

to level the playing field between conflicting groups may in fact be misguided and that

restrained superiority may foster the greatest level of peace.

Finally we consider the relationship between intervention and conflict. We show that un-
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der complete information, unless intervention occurs immediately, it will make peace harder

to sustain. This is not true anymore under strategic risk, as intervention may reduce players’

fears of being the victim of a surprise attack. More precisely, we show that when conflict is

diverging, in the sense that second movers fare worse and worse compared to first movers,

then intervention will always facilitate the sustainability of peace. This result suggests that

interventionist policies may improve the sustainability of peace even though they appear to

worsen the players’ predatory incentives.

The model we use to make these points is very streamlined. On the one hand, we view

this as a strength of the paper. It highlights the importance of strategic risk as a fundamental

determinant of cooperation that can potentially yield rich comparative statics. Intuitions

from our model also apply to many different circumstances of conflict, whether it occurs

between countries, armed groups within a country, or individuals. Our results may also

apply to non-violent conflict settings such as price wars between firms. On the other hand,

because it is so simple, our model leaves open a number of questions which need to be

addressed if we are to gain a comprehensive understanding of the determinants of war and

peace. In particular, allowing for investment in both productive and military capital would

be a useful direction for future research.

A Appendix: Proofs

A.1 Proofs for Section 2

Proof of Proposition 1: Since for all i ∈ {1, 2}, Fi > Wi > Si, the highest continuation

value player i can expect is max{Fi, 1
1−δπ}. If peace is an equilibrium action for player i,

this implies that π+ δmax{Fi, 1
1−δπ} ≥ Fi, which yields that necessarily 1

1−δπ ≥ Fi. Finally,

since Si < Wi, peace is an equilibrium action only if both players choose peace. This shows

that whenever peace is an equilibrium outcome, then for all i ∈ {1, 2} we have 1
1−δπ ≥ Fi.

The reverse implication is straightforward: whenever 1
1−δπ ≥ Fi, then being always peaceful

is an equilibrium. �

The proof of Proposition 2 follows closely Chassang (2008) and Chassang (2009). How-
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ever, because we have only one dominance region, the proofs must be adapted in non-trivial

ways. We first introduce some notation and prove intermediary results in Lemmas A.1 and

A.2.

Definition A.1 For any pair of values (Vi, V−i) ∈ R we denote by xRD(Vi, V−i) the risk-

dominant threshold of the one shot 2×2 game

P A

P x+ δVi Si

A Fi Wi

which is defined as the greatest solution of the second degree equation:∏
i∈{1,2}

(x+ δVi − Fi) =
∏

i∈{1,2}

(Wi − Si) (12)

Definition A.2

(i) We define a partial order � on strategies as follows:

s � s′ ⇐⇒ {a.s.∀h ∈ H, s(h) = P ⇒ s′(h) = P}.

(ii) A strategy si is said to take a threshold-form if and only if there exists xi ∈ R
such that for all hi,t, si(hi,t) = P ⇐⇒ xi,t ≥ xi. A strategy of threshold xi will

be denoted sxi.

(iii) Given a strategy s−i, a history hi,t and continuation value functions (Vi, V−i),

we denote by

UP
i,σ(Vi, hi,t, s−i) = E

[
(π̃t + δVi)1s−i(h−i,t)=P + Si1s−i(h−i,t)=A | hi,t, s−i

]
UA
i,σ(hi,t, s−i) = E

[
Fi1s−i(h−i,t)=P +Wi1s−i(h−i,t)=A | hi,t, s−i

]
the payoffs23 player i expects upon playing P and A.

(iv) Given a strategy s−i we denote by Vi,σ(s−i) the value function that player i

obtains from best-replying to strategy s−i.

23We drop the σ subscript and the dependency on hi,t whenever doing so does not cause confusion.
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(v) Given a strategy s−i, a history hi,t and a value function Vi, we define

∆i,σ(hi,t, s−i, Vi) = UP
i,σ(Vi, hi,t, s−i)− UA

iσ(hi,t, s−i).

(vi) Given xi ∈ R and Vi ∈ R, for all α ∈ [−2, 2] we define ∆̂i,σ(xi, α, Vi) =

∆i,σ(xi, sxi−ασ, Vi).
24

Lemma A.1 (intermediary results) There exists σ > 0 and κ > 0 such that for all

σ ∈ (0, σ), all the following hold,

(i) Whenever s−i is threshold-form and s′−i � s−i, then Vi,σ(s−i) ≥ Vi,σ(s′−i).

(ii) Consider s−i a threshold form strategy and s′−i any strategy such that s′−i �
s−i. Whenever ∆i,σ(hi,t, s

′
−i, Vi,σ(s′−i)) ≥ 0 then ∆i,σ(hi,t, s−i, Vi,σ(s−i)) ≥ ∆i,σ(hi,t, s

′
−i, Vi,σ(s′−i)).

(iii) For any Vi ∈ [Wi,
1

1−δπ] , whenever ∆̂i,σ(xi, α, Vi) ≥ 0, then
∂∆̂i,σ

∂xi
> κ and

∂∆̂i,σ

∂α
> 0. Furthermore, if in addition there exists V−i ∈ [W−i,

1
1−δπ] such that

∆−i,σ(xi − ασ,−α, V−i) ≥ 0, then
∂∆̂i,σ

∂α
> κ.

Proof: We begin with point (i). Let us first show that whenever V is a constant and V ′ is

a value function such that for all hi,t, V
′(hi,t) ≤ V , then for σ small enough,

max{UP
i,σ(V, hi,t, s−i), U

A
i,σ(hi,t, s−i)} ≥ max{UP

i,σ(V ′, hi,t, s
′
−i), U

A
i,σ(hi,t, s

′
−i)}.

Indeed, since Fi > Wi it follows that UA
i,σ(s−i) ≥ UA

i,σ(s′−i). Also for any history hi,t such

that UP
i,σ(V, hi,t, s

′
−i) ≥ UA

i,σ(hi,t, s
′
−i), there must exist some value of π̃t, occurring with with

positive likelihood conditional on hi,t, such that π̃t + δV ≥ Fi. Since Fi > Si and π̃t has

support [xi,t−σ, xi,t +σ] conditionally on hi,t, this implies that there exists σ1 > 0 such that

for all σ ∈ (0, σ1), if UP
i,σ(V, s′−i) ≥ UA

i,σ(s′−i) then, π̃t+δV > Si with probability 1 conditional

on hi,t. This yields that whenever UP
i,σ(V, s′−i) ≥ UA

i,σ(s′−i), then UP
i,σ(V, s−i) ≥ UP

i,σ(V, s′−i).

Since UP
i,σ(V, s−i) ≥ UP

i,σ(V ′, s−i), this yields that indeed for all σ ∈ (0, σ1),

max{UP
i,σ(V, s−i), U

A
i,σ(s−i)} ≥ max{UP

i,σ(V ′, s′−i), U
A
i,σ(s′−i)}. (13)

24Note that ∆i,σ(xi, sxi−ασ, Vi) is a slight abuse of notation since the first argument of ∆i,σ should be a
history. Since threshold-form strategies only depend on the current signal, we only keep track of the relevant
part of history hi: the signal xi.
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Since for any strategy s′′−i, the value Vi(s
′′
−i) is the highest solution of the fixed point equation

Vi(s
′′
−i)(hi,t) = max{UP

i (Vi(s
′′
−i), hi,t, s

′′
−i), U

A
i (hi,t, s

′′
−i)), inequality (13) implies that for all

σ ∈ (0, σ1), Vi,σ(s−i) ≥ Vi,σ(s′−i). This proves point (i).

We now turn to point (ii). From point (i), we know that Vi,σ(s−i) ≥ Vi,σ(s′−i). Also,

since Si −Wi < 0, there exists, σ2 > 0 such that for all σ ∈ (0, σ2), ∆i,σ(hi,t, s
′
−i, V ) ≥ 0

implies that π̃t + δV − Fi ≥ 0 > Si −Wi. This yields that

∆i,σ(hi,t, s−i, Vi,σ(s−i)) = E[(π̃t + δVi,σ(s−i)− Fi)1s−i=P + (Si −Wi)1s−i=A | hi,t, s−i]

≥ E[(π̃t + δVi,σ(s−i)− Fi)1s′−i=P + (Si −Wi)1s′−i=A | hi,t, s
′
−i]

≥ E[(π̃t + δVi,σ(s′−i)− Fi)1s′−i=P + (Si −Wi)1s′−i=A | hi,t, s
′
−i]

≥ ∆i,σ(hi,t, s
′
−i, Vi,σ(s′−i))

which yields point (ii).

We now turn to point (iii). Denote by fε and Fε the distribution and c.d.f. of εi,t and

define Gε ≡ 1− Fε. Recall that g denotes the distribution of π̃t. We have that

∆̂i,σ(xi, α, Vi) = E
[
(π̃t + δVi − Fi)1x−i,t≥xi−ασ + (Si −Wi)1x−i,t≤xi−ασ | xi,t

]
=

∫ 1

−1

[(xi − σu+ δVi)Fε(α + u) + (Si −Wi)Gε(α + u)]
fε(u)f(xi − σu)∫ 1

−1
fε(u′)f(xi − σu′)du′︸ ︷︷ ︸

≡Ψσ(xi,u)

du.

Since Si −Wi < 0, there exists σ3 > 0 and τ > 0 such that for all σ ∈ (0, σ3), whenever

∆̂i,σ(xi, α, Vi) ≥ 0 then α ≥ −2 + τ . Otherwise Fε(α + u) would be arbitrarily small and

we would have ∆̂i,σ(xi, α, Vi) < 0. Standard results on convolution products25 show that

as σ goes to 0, the posterior Ψσ(xi, u) converges uniformly to fε(u) and that ∂Ψσ
∂xi

converges

uniformly to 0. This yields that there exists σ4 and κ1 > 0 such that whenever σ ∈ (0, σ4),

then
∂∆̂i,σ

∂xi
> k1 > 0.

Now assume that we also have ∆̂−i,σ(xi − ασ,−α, V−i) ≥ 0. Since S−i −W−i < 0 there

exists σ5 > 0 and τ ′ > 0 such that for all σ ∈ (0, σ5), ∆̂−i,σ(xi − ασ,−α, V−i) ≥ 0 implies

that −α ≥ −2 + τ ′. Altogether this implies that α ∈ [−2 + τ, 2 − τ ′]. From there, simple

algebra yields that there exists σ6 > 0 and κ2 > 0 such that for all σ ∈ (0, σ6),
∂∆̂i,σ

∂α
> κ2.

To conclude the proof, simply pick σ = mini∈{1,··· ,6} σi and κ = min(κ1, κ2). �

25See for instance Lemma 8 of Chassang (2008)
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We can now prove the claim made in Section 2.3 that for σ small, game Γσ,g admits a

most peaceful equilibrium taking a threshold form. The proof makes extensive use of Lemma

A.1.

Let us first show that if s−i is a threshold-form strategy of threshold x−i, then the best

reply to s−i is also threshold form. The best reply to s−i is to play peace if and only

if ∆i,σ(xi,t, s−i, Vi,σ(s−i)) ≥ 0. Since the value Vi,σ(s−i) is constant, point (iii) of Lemma

A.1 holds and it follows from simple algebra that ∆i,σ(xi,t, s−i, Vi,σ(s−i)) ≥ 0 implies that
∂∆i,σ

∂xi
> 0. This single crossing condition implies that the best reply is to play peace if and

only if xi,t ≥ xi where xi is the unique solution of ∆i,σ(xi, s−i, Vi(s−i)) = 0. Hence the best

reply to a threshold form strategy is a threshold form strategy.

Point (ii) of Lemma A.1 also implies a form of monotone best reply. Consider two

strategies s−i and s′−i, and denote by si and s′i the corresponding best replies of player i.

Then whenever s−i is threshold-form and s′−i � s−i, then s′i � si (note that we also know

that si is unique and takes a threshold form). We call this property restricted monotone best-

reply. It allows us to replicate part of the standard construction of Milgrom and Roberts

(1990) and Vives (1990). Denote by BRi,σ and BR−i,σ the best-reply mappings and sP

the strategy corresponding to playing peace always. We construct the sequence {[BRi,σ ◦
BR−i,σ]k(sP )}k∈N. Since sP is threshold-form (with threshold−∞) and is the highest possible

strategy, this sequence is a decreasing sequence of threshold form strategies. Restricted

monotone best-reply implies that it also converges to a strategy sHi,σ that is an upper bound

to the set of equilibrium strategies of player i. Furthermore, (sHi,σ, s
H
−i,σ) is itself an equilibrium

(where sH−i,σ = BR−i,σ(sHi,σ)) which takes a threshold form. Point (i) of Lemma A.1 implies

that the associated values are the highest equilibrium values. This concludes the proof.

Let us now turn to the proof of Proposition 2. We begin by characterizing the most

peaceful equilibrium for fixed g as parameter σ goes to 0.

Lemma A.2 (characterizing the most peaceful equilibrium) For any x ∈ R, define

Vi(x) =
1

1− δprob(π̃ ≥ x)
[E(π̃1π̃≥x) + δprob(π̃ ≤ x)Wi] .

As σ goes to 0, xH
σ converges to a symmetric pair (xH , xH), where xH is the smallest value

x such that for all i ∈ {1, 2}, x+ δVi(x) ≥ Fi and∏
i∈{1,2}

(x+ δVi(x)− Fi) =
∏

i∈{1,2}

(Wi − Si). (14)
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Proof of Lemma A.2: We begin by showing the following result: for any upper bound

for values V ∈ R, there exists σ > 0 such that for any σ ∈ (0, σ) and for any (Vi, V−i) ∈
[Wi, V ]× [W−i, V ], the one-shot global game with payoffs

P A

P π̃t + δVi Si

A Fi Wi

has a highest equilibrium that takes a threshold-form denoted by x∗σ(Vi, V−i) = (x∗i,σ, x
∗
−i,σ).

Furthermore, as σ goes to 0, the mapping x∗σ : R2 → R2 converges uniformly over [Wi, V ]×
[W−i, V ] to the mapping x∗ : (Vi, V−i) 7→ (xRD(Vi, V−i), x

RD(Vi, V−i)).

The existence of a highest threshold form equilibrium results from point (ii) of Lemma

A.1. As in the dynamic case, one can prove a restricted form of monotone best-reply. Joint

with the fact that best-replies to threshold-form strategies are also threshold form, iterative

application of the best-reply mapping yields the result.

We now show uniform convergence. The proof uses point (iii) of Lemma A.1. The

equilibrium threshold x∗σ can be characterized as a pair (x∗i,σ, α) where α = (x∗i,σ − x∗−i,σ)/σ.

The pair (xi, α) must solve

∆̂i,σ(xi, α, Vi) = 0 (15)

∆̂−i,σ(xi − ασ,−α, V−i) = 0. (16)

As σ goes to 0, ∆̂i,σ converges uniformly to a mapping ∆̂i. Using point (iii) of Lemma A.1

equations (15) and (16) imply that there exists σ and κ > 0 such that for all σ ∈ (0, σ) we

must have

∀i ∈ {1, 2}, ∂∆̂i,σ

∂xi
> κ and

∂∆̂i,σ

∂α
> κ.

This implies that given xi there is at most a unique value ασ(xi) such that ∆i,σ(xi, ασ(xi), Vi) =

0. Since
∂∆̂i,σ

∂α
> κ > 0 we also have that ασ(xi) converges uniformly to the unique solution

in α of ∆̂i(xi, α, Vi) = 0. Furthermore, it must be that ασ(xi) is decreasing in xi. Define the

mapping ζσ(xi) = ∆̂−i,σ(xi − ασ(xi)σ,−ασ(xi), V−i). The equilibrium threshold x∗i,σ must

satisfy ζσ(x∗i,σ) = 0. At any such x∗i,σ, we have that ζσ is strictly increasing with slope greater

than κ. Furthermore, as σ goes to 0, ζσ converges uniformly to a mapping ζ. This yields

that as σ goes to 0, x∗i,σ must converge to the unique zero of ζ. We know from the global

games literature that this unique zero is xRD(Vi, V−i). This concludes the first part of the
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proof.

We now prove Lemma A.2 itself. The highest equilibrium sHσ of the dynamic game is

associated with constant values VH
σ and constant thresholds xHσ . This threshold has to

correspond to a Nash equilibrium of the one-shot augmented global game

P A

P π̃t + δV H
i,σ Si

A Fi Wi

where payoffs are given for row player i. Furthermore, since sHσ is the highest equilibrium

of the dynamic game, it must be that xHσ also corresponds to the highest equilibrium of the

one-shot augmented global game. Hence xHσ = x∗σ(VH
σ ). Let us denote by Vi,σ(x−i) the value

player i obtains from best replying to a strategy sx−i , and let Vσ(x) = (Vi,σ(x−i), V−i,σ(xi)).

We have that VH
σ = Vσ(xHσ ). Together this yields that VH

σ is the highest solution of the

fixed point equation VH
σ = Vσ(x∗σ(VH

σ )). We know that x∗σ converges uniformly to the sym-

metric pair (xRD, xRD). Furthermore, V σ
i (x) converges uniformly over any compact set to

Vi(x). Hence as σ goes to 0, V H
σ must converge to the highest solution VH of the fixed

point equation VH = V(xRD(VH)). Equivalently, xHσ must converge to the symmetric

pair (xH , xH) where xH is the smallest value such that xH = xRD(V(xH)). This yields

that indeed xH is the smallest value x such that for all i ∈ {1, 2}, x + δVi(x) ≥ Fi and∏
i∈{1,2}(x+ δVi(x)− Fi) =

∏
i∈{1,2}(Wi − Si), which concludes the proof. �

Using Lemma A.2, Proposition 2 follows directly.

Proof of Proposition 2: As gn converges to the Dirac mass dπ, the mapping Vi,gn(x)

converges to the mapping Vi,dπ(x) = 1
1−δπ1x≤π + Wi1x>π. The conditions of Proposition

2 simply correspond to whether π > xRD(V(π)) or π < xRD(V(π)). If π > xRD(V(π))

then the value of permanent peace generates a cooperation threshold below π and hence

permanent peace is self sustainable. If on the other hand π < xRD(V(π)) then even the

value of permanent peace generates a cooperation threshold above π so that with very high

probability immediate conflict occurs. This concludes the proof. �

A.2 Proofs for Section 3

Proof of Proposition 3: When ki = k−i = k, we have that πCI = (1 − δ)F (k) and
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πSR = (1 − δ)[F (k) + W (k)− S(k)]. Under Assumption 1, F is decreasing in k, and hence

πCI is decreasing in k. Clearly, πSR is decreasing in k if and only if F ′(k)+W ′(k)−S ′(k) < 0.

�

Proof of Fact 1: Whenever D is convex over the range [ρSk, ρFk], then ρSD
′(ρSk) is in-

creasing in ρS and ρFD
′(ρFk) is increasing in ρF . Hence φ is decreasing in ρF and increasing

in ρS. �

Proof of Fact 2: The complete information case is immediate and we focus on the case of

strategic risk.

When ki = k−i = k, then πSR = (1− δ)(F (k) +W (k)− S(k)). We have that

inf
k≥0

πSR(k) ≥ (1− δ) inf
k≥0

F (k) + (1− δ) inf
k≥0

[W (k)− S(k)].

By Assumptions 1, and 3 we get that

inf
k≥0

πSR(k) ≥ (1− δ) lim
k→∞

F (k) + (1− δ) lim
k→∞

[W (k)− S(k)] = lim
k→∞

πSR(k).

This concludes the proof. �

Proof of Fact 3: We have that

dπSR
dk

=
dF

dk
+

dW

dk
− dS

dk
= −ρSD′(ρSk)−D′(k) + ρFD

′(ρFk).

Using Assumption 4 and the fact that ρF > 1 > ρS, we obtain that at k = k∗, dπSR/dk =

+∞. Since πSR is continuously differentiable in k, this concludes the proof. �

Proof of Proposition 5: We first prove point (i). In the benchmark model, we have that

Wi − Si =
λ

1 + λ
m− ρSλ

ρF + ρSλ
m−D(k) +D(ρFk) > −D(k) +D(ρFk). (17)

Hence

lim
λ→+∞

Wi − Si = −D(k) +D(ρFk) = inf
λ≥1

Wi − Si.
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We also have that

W−i − S−i =
1

1 + λ
m− ρS

ρS + ρFλ
m−D(λk) +D(ρFλk) > 0. (18)

Since by assumption D is increasing in k and bounded above, this yields that

lim
λ→+∞

W−i − S−i = 0 = inf
λ≥1

W−i − S−i.

This proves point (i). Point (ii) follows from taking derivatives in equations (17) and (18)

and using the fact that D′(λρFk) < D′(λk). �

Proof of Proposition 6: When λ = 1, peace is sustainable under strategic risk if and only

if 1
1−δπ ≥ F (k) +W (k)− S(k). In the benchmark model, this boils down to

1

1− δ
π ≥ ρF

ρF + ρS
m−D(ρSk) +

1

2
m−D(k)− ρS

ρF + ρS
m+D(ρFk).

Hence when condition (9) holds, peace is not sustainable under strategic risk.

When weapon stocks are asymmetric (λ > 1), then peace is sustainable under strategic

risk if and only if ∏
i∈{1,2}

(
1

1− δ
π − Fi

)+

>
∏

i∈{1,2}

(Wi − Si) . (19)

We have just shown that whenever D is bounded above, as λ goes to +∞ the difference

W−i−S−i goes to 0. Since for all λ ≥ 1, Fi ≥ F−i and limλ→+∞ Fi = m−D(ρSk), inequality

(19) boils down to
1

1− δ
π > m−D(ρSk).

Hence condition (10) guarantees that as λ goes to +∞, peace will be sustainable under

strategic uncertainty. This concludes the proof. �

A.3 Proofs for Section 5

Proof of Proposition 7: Point (i) is obvious. As for point (ii), we have that 1
1−δπ

T
CI =∑T−1

t=0 δ
tft+

∑+∞
t=T δ

tπ′. Hence πT+1
CI −πTCI = δT (1−δ)(fT−π′). This concludes the proof. �
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Proof of Proposition 8: Point (i) holds since for T = 0, we have that W T
i − STi = 0

and 1
1−δπ − Fi = 1

1−δ (π − π′) > 0. This implies that (P, P ) is indeed the risk-dominant

equilibrium of the augmented one-shot game.

As for point (ii), we have that 1
1−δπ

T
SR =

∑T−1
t=0 δ

t(wt + ft − st) +
∑+∞

t=T δ
Tπ′. Hence

πT+1
SR − πTSR = δT (1− δ)(fT + wT − sT − π′), which concludes the proof. �

B Sustaining Peace with Asymmetric Weapon Stocks

In this appendix, we provide an example such that under strategic risk, large and asymmetric

weapon stocks will sustain peace, whereas large and symmetric weapon stocks won’t.

We use the benchmark payoffs described in Section 3.2, and make the following assump-

tions:

(B.i) the early mover advantage is sufficiently large that

(ρF − ρS)/(ρF + ρS) + 1/2 > 1;

(B.ii) the damage function D is bounded above, with D ≡ supk≥0D(k);

(B.iii) the value m from victory is such that

1

1− δ
π <

(
1

2
+
ρF − ρS
ρF + ρS

)
m−D (20)

1

1− δ
π > m−D. (21)

Note that point (B.i) above implies that there exist a range of values m satisfying point

(B.iii).

Straight forward algebra shows that under Condition (20), if weapon stocks ki and k−i

grow arbitrarily large with ki = k−i, then asymptotically, peace is not sustainable under

strategic risk.26 In contrast, Condition (21) implies that if weapon stocks ki and k−i grow

arbitrarily large with the ratio k−i/ki going to 0, then asymptotically, peace is sustainable

under strategic risk.

26The result holds if the ratio ki/k−i goes to 1.
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This occurs because when players are of equal strength, preemptive incentives are asymp-

totically equal to [1/2 − ρS/(ρF + ρS)]m which is strictly positive given Assumption (B.i)

above. If instead both players have high weapon stocks, but one player is arbitrarily stronger

than the other, preemptive incentives for the stronger player go to 0 since she is obtains vic-

tory payoff m independently of whether she attacks first or second. As a consequence the

right hand term of Condition (2) is equal to zero and the sustainability of peace is guaran-

teed if and only if the stronger player has negative predatory incentives, which follows from

Condition (21).

This suggests that in some settings one player may be willing to disarm unilaterally in

order to facilitate the sustainability of peace. However, our model however is too streamlined

to treat properly the question of demilitarization. In particular, in a model where conflict

does happen with positive probability on the equilibrium path, weapons have value on the

equilibrium path and each player will prefer the other player to be the one relinquishing

weapons. A more reasonable prediction is that a well armed player may be quite willing to

tolerate the unilateral acquisition of weapons by a peaceful opponent.
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