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Abstract

Crypto-currencies and other innovative asset classes present a fundamental chal-
lenge for quantitative asset-allocation. Because the track record of innovative assets
is by definition short, it is difficult to form reliable estimates of expected returns and
covariance matrices needed as inputs for standard portfolio optimization. Even if such
estimates are available, they may be useless to investors if the behavior of underlying
assets changes over time. Building on the MinMax Drawdown Control framework of
Chassang (2018), this paper proposes a conceptually attractive and empirically success-
ful approach to build benchmark portfolios of crypto-currencies and other innovative
assets.

References: crypto-currencies, MinMax Drawdown Control, prior-free asset al-
location, agnostic asset allocation, innovative assets.

1 Introduction

Black and Litterman (1992) uncover a central challenge for portfolio allocation. Natural

implementations of mean-variance optimal portfolios (Markowitz, 1952), using historical data

to estimate returns and correlations, frequently lead to unattractive, leveraged, and highly
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unstable portfolios. One response to this issue has been to avoid including estimated returns

as an input to portfolio construction: risk-parity (Lörtscher, 1990; Kessler and Schwarz, 1990;

Sharpe, 2002) allocates portfolio weights on the basis of volatility estimates alone; DeMiguel

et al. (2009) defends the merits of equal-weight portfolios. The limitations of historical data

as a determinant of portfolio allocation seems particularly salient in the case of innovative

asset classes with limited track record.

Chassang (2018) tackles the problem of portfolio allocation over novel or changing assets

and argues the merits of worst case drawdown guarantees as a benchmark objective for

dynamic asset allocation: a good dynamic asset allocation framework should guarantee low

drawdowns relative to both the safe asset, and underlying risky assets. MinMax Drawdown

Control helps an agnostic investor achieve low drawdowns for every possible realization of

returns. This paper expands on Chassang (2018) in three ways.

(i) It formalizes the point that investors who have correct beliefs about the stochastic

process for returns should experience low drawdowns with high probability;

(ii) It shows how to build portfolio indices that guarantee low drawdowns for over-

lapping generations of investors;

(iii) It illustrates the empirical value of MinMax Drawdown Control by applying it to

the problem of managing a portfolio of crypto-currencies.

Figure 1: applying minmax drawdown control to cash and bitcoin.
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Crypto-currencies are an interesting case-study for the MinMax Drawdown approach for

several reasons. First, as Figure 1 illustrates, MinMax Drawdown Control considerably

improves the risk-reward trade-off of a crypto-currency investor. Second, crypto-currencies

have a short track-record available, making estimation difficult. Third, the asset class has

experienced, and will mostly likely continue to experience, considerable changes, reflecting

evolutions in the set of investors, regulation, and technological use cases.

2 Investing With and Without Priors

2.1 Setup

An investor with finite horizon N ∈ N allocates resources across several risky assets i ∈

{1, · · · , I} and a single risk-free asset denoted by 0.

For simplicity, returns r0 ≥ 0 to the risk-free asset are constant over time. Risky returns

(ri)i∈{1,··· ,I} belong to a set M of market returns taking the form M = [−r, r]I , with r ∈ (0, 1).

Let rt ≡ (r0, rit)i∈{1,··· ,I} denote realized returns at time t.

Let (ait)i∈{1,··· ,I} and a0t respectively denote allocations to the risky and risk-free assets

at time t. Allocations to risky assets must belong to [a, a]I . In addition total allocation

weights must sum to one, so that a0 = 1 −
∑

i∈I a
i. The overall allocation is denoted by

a = (a0, ai)i∈{1,··· ,I}. We denote by A the corresponding set of allocations.

An allocation strategy α maps each history of returns

ht = (rs)s∈{0,··· ,t−1} ∈ H

to an allocation α(ht) ∈ A. We denote by A the set of possible allocation strategies. For

simplicity, our theoretical section assumes that trading costs are equal to zero, while we allow

for realistic trading costs in the empirical section. The returns rαt associated to allocation
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strategy α in period t take the form

rαt ≡
I∑
i=0

αi(ht)r
i
t.

The growth optimal portfolio. We consider the problem of an investor that seeks to

maximize the expected long-run growth of her portfolio

N∑
t=1

log(1 + rαt ).

Under the standard Bayesian framework, the investor is equipped with a prior µ ∈

∆(MN) over sequences of returns (rt)t∈{1,··· ,N}. This prior captures the investor’s beliefs over

the possible evolution of returns. This may include the presence of positive auto-correlation

in returns, the possibility that a bubble may be underway, and so on. The investor chooses

the allocation strategy α that solves

max
α∈A

Eµ

[
N∑
t=1

log(1 + rαt )

]
. (1)

The difficulty we confront in this paper is that forming beliefs µ is difficult, especially

when there is little data to inform the decision-maker. An indicator of this difficulty is that

different well-informed investors will frequently disagree about expected market behavior.

Beliefs over innovative assets, such as crypto-currencies, are inherently subjective. As a

result, a given investor’s belief may be thoroughly unrelated to the true process followed by

returns. How should an investor aware of this difficulty approach asset allocation?

2.2 A well calibrated investor should have low drawdowns

We now establish a reference property that well-constructed portfolios must satisfy: if the

investor has correct beliefs over the possible distribution of returns, her portfolio returns
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should experience low drawdowns with very high probability.

For any asset i ∈ {0, · · · , I} let ei denote the allocation that places a weight of 1 on asset

i. Take as given ν ∈ [0, 1]. For any allocation a, define the allocation

a→i = νei + (1− ν)a

that shifts mass ν of the portfolio towards asset i. Similarly, given a strategy α, we denote

by α→i the strategy that shifts a mass ν of the portfolio generated by α to asset i

Definition 1 (drawdowns). Given a realized sequence of returns r = (rt)t∈{1,··· ,N}, the rela-

tive drawdown of allocation strategy α relative to asset i is given by:

Di(α, r) = max
T ′≤T≤N

T∑
t=T ′

log
(

1 + rα
→i

t

)
− log (1 + rαt ) .

A special case of interest is that where ν = 1. In that case, drawdown D0(α, r) corre-

sponds to the usual drawdown against the safe asset, i.e. peak-to-trough losses against the

safe asset. More generally drawdowns can be interpreted as a sample version of optimality

conditions: they correspond to the maximum potential gains from adjusting a benchmark

portfolio α towards a particular underlying asset i over each time interval {T ′, · · · , T}.

Theorem 1 (well-calibrated investors experience low drawdowns). Consider the optimal

allocation strategy α∗ of a Bayesian decision maker solving investment problem (1) under

a prior µ. If the investor has correct, priors, that is, if returns r are indeed distributed

according to µ, then for all ε > 0 and all i ∈ {0, · · · , I}

lim
N→∞

probµ (Di(α, r) ≥ εN) = 0.

As the proof shows (see Appendix A), the speed of convergence is related to the magnitude

r of extreme daily returns. As the maximum amplitude of daily returns r grows large, it
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becomes more likely that portfolio returns experience high drawdowns.

2.3 MinMax Drawdown Control

An implication of Theorem 1 is that if a decision-maker experiences high drawdowns, then,

her beliefs are likely misspecified. This makes low-drawdown portfolios an agnostic bench-

mark that investors seeking to invest in crypto-currencies or other innovative assets can build

on.

Chassang (2018) characterizes the asset allocation strategies α which guarantee the best

possible drawdown guarantees against arbitrary sequences or returns r. Formally, these are

the strategies that solve

min
α∈A

max
r∈MN

max
i∈{0,··· ,I}

λiDi(α, r) (2)

where λ0 = 1 and (λi)i∈{1,··· ,I} ≥ 0 parameterize the relative importance of different draw-

downs for the investor. Setting maximum drawdown targets against the safe asset will pin-

down parameters (λi)i∈{1,··· ,I}. Chassang (2018) also establishes that worst-case drawdowns

under minmax drawdown strategies are of order
√
N .

The two asset case. Figure 2 shows that in the case of two reference assets — a risk-free

asset 0, and a risky asset 1 — minmax drawdowns (D0,D1) map out an intuitive two-

dimensional frontier: D0 captures losses against the safe asset; D1 captures foregone perfor-

mance relative to the risky asset. For every guaranteed maximum drawdown D0 against the

safe asset, the frontier associates the best possible drawdown guarantee D1 for drawdowns

against the risky asset.

This lets the decision-maker express preferences over risk without refering to a prior. A

particularly risk-averse investor will prefer very low drawdowns with respect to the safe asset

at the expense of higher drawdowns against the risky asset. Inversely, an aggressive investor

will prefer low drawdowns against the risky asset, at the expense of higher drawdowns against
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Figure 2: minmax drawdown frontier: r1 ∈ {−.05, 0, .05}, N = 252, ν = 1.

the safe asset.

It turns out that the optimal asset allocation strategy α∗T at time T depends only on

regrets Ri,T = maxT ′≤T
∑T

t=T ′ log
(

1 + rα
→i

t

)
− log(1 + rαt ) for i ∈ {0, 1}. As Figure 3

illustrates, allocation weight α∗0,T (R0,T ,R1,T ) to the safe asset must be increasing in R0,T

and decreasing in R1,T .

Figure 3: discretized policy functions as a function of R0 and R1 at time T=30.
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Averaging over investors. Investment problem (1) considers the problem of an agent

with a given investment time-frame {1, · · · , N}. In practice, one may be interested in con-

structing long-term portfolio indices that are attractive to overlapping generations of in-

vestors. If investors each have a horizon of N periods, in any period T ∈ N, investors with

investment initiation dates

T −N + 1, T −N + 2, · · · , T

are active. Let Kt denote the set of investors active at date t indexed by their initial

investment date. Let α∗k denote the MinMax Drawdown strategy corresponding to an investor

with initial investment date k ∈ Kt.

A natural portfolio aggregation strategy is simply to average out the minmax drawdown

portfolios α∗k of active investors. At date t, the corresponding averaged portfolio α∗t takes

the form

α∗t ≡
1

N

∑
k∈Kt

α∗k,t.

Importantly, averaged-out portfolios continue to provide drawdown guarantees.

Theorem 2 (low drawdown indices). Set ν = 1. For all assets i ∈ {0, · · · , I}, all infinite

sequences of returns (rt)t∈N, and all T ′, T such that 0 ≤ T − T ′ ≤ N ,

T∑
t=T ′

log(1 + rit)− log(1 + rα
∗

t ) = o(N).

As a result, averaged-out low-drawdown strategies are well suited to form the basis of

portfolio indices suitable for a broad class of investors. We now apply these strategies to

baskets of crypto-currencies.
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3 Application to Crypto-Currencies

Minmax Drawdown Control strategies are designed to provide robust performance guarantees

in adversarial market environments. This section applies our framework to historical price

data for leading crypto-currencies.

The risk-parity benchmark. In order to provide a comparison point, we include the

performance of a risky-parity allocation strategy as a comparison. We set the volatility

target of the risk-parity strategy so that it experiences the same drawdowns D0 against the

safe asset as the MinMax Drawdown portfolio.

Formally, risk-parity is a particular implementation of modern portfolio theory. It assigns

weights to risky assets that are inversely proportional to each asset’s volatility:

αit = ρ
1

σ̂i,t

where σ̂i,t is a volatility estimate for asset i at time t, and ρ is a scaling parameter used

to adjust overall portfolio volatility. Risk-parity implicitly assumes that expected returns

are proportional to volatility. As a result, it fails to provide drawdown-control guarantees

against either the safe or the risky asset: it can have too much volatility exposure in difficult

times, and too little volatility exposure in good times.

3.1 Single asset risk-management: the case of bitcoin

We begin by illustrating the behavior of MinMax Drawdown portfolios in the two-asset case,

using cash and bitcoin as reference assets. We consider investors with a one year horizon,

who dislike drawdowns against the safe asset twice as much as drawdowns against the risky

asset, i.e. we set λ0 = 1 and λ1 = .5. We allow for daily price movements in the range

M = [−5%,+5%]. To reflect the need for plausible liquidity, we use January 1st 2011 as

the initiation date of the bitcoin portfolio. We use trading costs of .5%, but our results are
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essentially unchanged for trading costs of 1%. Given bitcoin’s volatility, trading costs of that

magnitude are not a limiting factor. In the case of a single risky asset, risk parity boils down

to a volatility-control strategy.

Figure 4: performance of minmax drawdown and volatility control portfolios.

As Table 1 and Figure 4 illustrate, both volatility control and MinMax Drawdown Con-

trol considerably improve the risk-reward trade-off of investing in bitcoin as captured by the

Sharpe ratio. However, in order to match the realized drawdowns D0 of MinMax Drawdown

Control, volatility control must considerably reduce its exposure throughout the invest-

ment period, which significantly reduces the corresponding annualized returns. As a result,

MinMax Drawdown Control achieves a much better performance-to-drawdown ratio than

volatility control.

minmax drawdown volatility control bitcoin
Sharpe 4.14 3.59 1.75
annualized returns 2.96 1.53 3.01
drawdown D0 0.50 0.50 0.93
volatility 0.71 0.42 1.71

Table 1: performance metrics for minmax drawdown control, volatility control, bitcoin.
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3.2 Multi-asset crypto-currency portfolios

Figure 5: bitcoin, ethereum and ripple over our selected sample period.

We now turn to the case of multiple risky assets and consider a portfolio allocation

problem in which the investor seeks to optimize over cash, bitcoin, ethereum and ripple. To

reflect the need for sufficient liquidity, we use January 1st 2016 as the first date of inclusion

of etherum and ripple as underlying assets.

minmax drawdown risk parity equal-weight
Sharpe 7.34 4.02 2.93
annualized returns 6.88 2.11 5.17
drawdown D0 0.60 0.60 0.93
volatility 0.93 0.52 1.76

(a) performance since 2011

minmax drawdown risk parity equal-weight
Sharpe 15.22 5.90 12.73
annualized returns 12.68 2.18 13.67
drawdown D0 0.43 0.26 0.70
volatility 0.83 0.37 1.07

(b) performance since 2016

Table 2: performance metrics for minmax drawdown control, risk-parity, and equal-weight
portfolios, starting from 2011 and 2016.

Again, both risk-parity and MinMax Drawdown Control improve on the Sharpe ratio
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achieved by a regularly rebalanced equal-weight portfolio. However, MinMax Drawdown

Control achieves much higher annualized returns than risk-parity for the same worst-case

drawdown. In fact, by successfully adjusting its exposure toward the best performing un-

derlying crypto-currency, MinMax Drawdown Control achieves better raw performance than

the much riskier equal-weight portfolio.

(a) performance since 2011

(b) performance since 2016

Figure 6: performance of minmax drawdown control, risk-parity, and equal weight portfolios,
starting from 2011 and 2016.
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4 Conclusion

A well calibrated Bayesian investor — i.e. an investor whose prior belief over the underlying

stochastic process for returns is correct — should not experience large drawdowns. An agnos-

tic investor can still achieve low worst-case drawdowns by following a MinMax Drawdown

Control strategy. Importantly, such strategies can be aggregated to form low-drawdown

portfolio indices, suitable for overlapping generations of investors. Both theoretically and

empirically, the approach is well suited to guide portfolio allocation over innovative asset

classes such as crypto-currencies.

Appendix

A Proofs

Proof of Theorem 1: The proof relies on the fact that having low drawdowns is a sample

expression of optimality conditions. By definition, at any history ht of returns before time

t, the investor’s optimal allocation α∗(ht) cannot be improved by shifting the allocation

towards any single asset allocation ei. Hence, for all i ∈ {0, · · · , I}, and all histories ht

Eµ
[
log
(

1 + rα
→i

t

) ∣∣ht]− Eµ[log(1 + rαt )|ht] ≤ 0

Let m = log (1 + r)−log (1− r) denote the maximum per-period difference in log returns.

Using the Azuma-Hoeffding inequality (see Cesa-Bianchi and Lugosi (2006), Lemma A.7 for

a reference) this implies that when returns are drawn from the investor’s prior, then, for all

T ′ ≤ T ≤ N , for all i

probµ

(
T∑

t=T ′

log
(

1 + rα
→i

t

)
− log (1 + rαt ) ≥ εN

)
≤ exp

(
−ε2N/2m2

)
.

Using the union bound it follows that probµ (Di(α∗, r) ≥ εN) ≤ N2 exp (−ε2N/2m2) → 0,

which concludes the proof. �

Proof of Theorem 2: Let K = ∪t∈{T ′,··· ,T}Kt. It corresponds to the set of investors who
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may be active at some period in the interval {T ′, · · · , T}. We have that card K ≤ 2N . By

Jensen’s inequality, for any T ′ ≤ T , we have that

T∑
t=T ′

log(1 + rit)− log(1 + rα
∗

t ) ≤
T∑

t=T ′

log(1 + rit)−
1

N

∑
k∈Kt

log(1 + rαk
t )

≤ 1

N

∑
k∈K

max
T ′≤T0≤T1≤T

T1∑
t=T0

log(1 + rit)− log(1 + rαk
t )

≤ O(
√
N)

where the last inequality follows from the fact that each underlying MinMax Drawdown

strategy ensure that drawdowns are uniformly bounded, and of order
√
N . �
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