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Why bother?

New York, April 1st, 2020.

After three weeks confined in a New York apartment, I decided to use my
new free time to formalize and expand some notes I’ve used to teach my niece
(9) and nephew (12) simple physics without calculus. There is no wrong way
to remain sane.

The visual programming language Scratch plays a key role in this endeavor. I
think it’s a great tool to run simple discrete-time simulations of dynamic sys-
tems. This avoids the abstraction of calculus without sacrificing rigor. The
goal is to teach kids a bit of programming, a bit of physics, and some quan-
titative modeling skills using only the four basic operations and elementary
logic.

In all likelihood, going through this class will require help from an adult, or
an older sibling. One way to approach the course is to let kids work on each
chapter on their own for a while before going through it with them again. It
makes for a satisfying struggle, and hopefully there will be some meaningful
rewards. Chapter 7, a revolting simulation of what goes on in the vomit
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comet, comes to mind.

The hope is that the course will have something to offer even to younger
kids who might prefer to play around with the simulations. Scratch has
remarkable graphical capabilities. Customizing the simulations to make them
as pretty or weird as possible is fun.

Requirements. For this class you will need

• to add, substract, multiply, and divide like a rockstar;

• to understand mathematical symbols like +,−,×, / as well as < (less
than), or > (greater than);

• some scrap paper and a pencil for practice exercises;

• a computer, an internet connection, and a scratch account (you can get
one for free at scratch.mit.edu).

The Scratch projects corresponding to each chapter are available at

https://scratch.mit.edu/users/prof_chassang/.

As you go through the chapters simply copy the relevant project to your
own account by clicking the [@Remix] button in the upper-right corner of the
screen. Get into the code by clicking the [See Inside] button and modify
things as much as you want. Breaking things is a great way to learn, and
there is no cleaning up here. If you mess things up, you can always go back
the project’s page, and create a brand new copy.
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Finally, before you get started, it’s probably a good idea to get acquainted
with Scratch by going through a few tutorials here. Please do so now, the
rest of this class will be a lot easier.
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Chapter 1

Position and Speed

Position is pretty easy. The position of an object at a moment in time
describes where the object is at that particular moment. For instance, right
now I’m sitting at my desk. Of course, there are other ways to describe where
I am. If you haven’t been to my apartment, knowing that I’m at my desk
will not help you find me. Instead, if you know where Grand Central Station
in New York is, I could tell you

“From Grand Central, walk 3.5 blocks West and 28.5 blocks South. I’ll be
there.”

These two numbers (3.5, 28.5) describe my position on the map centered
at Grand Central, with one block being the unit of distance.1 With that
information, you could go on Google Maps and find where I live.

1This is called a Cartesian coordinate system, named after this very smart Frenchman. There
are many other coordinate systems, i.e. ways to describe position. An important one is polar
coordinates.
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This is the way an object is located in Scratch: the coordinate X describes
the object’s position on the horizontal axis (left to right), the coordinate Y

describes the object’s position on the vertical axis (bottom to top). The
center of the screen is at the position X = 0, Y = 0 (sometimes I will
write this (0, 0)). The top-right corner has coordinates X = 240, Y = 180,
the bottom-left corner has coordinates (X,Y ) = (−240,−180). The unit of
length is “the width of one Scratch-pixel”

Exercise 1.A Position in the Cartesian Plane

Get a piece of paper, and orient it sideways. Imagine the center has coordi-
nates (0, 0) – this is Grand Central in my example. Coordinate X corresponds
to the horizontal axis, coordinate Y corresponds to the vertical axis. The unit
of distance is the width of your left-thumb (right-thumb if you are a lefty).

1 Draw Grand Central, a horizontal line through the center for the X-axis,
and a vertical line through the center for the Y -axis.

2 Draw the position of the United Nations: (X,Y ) = (3, 4).

3 Draw the position of the Empire State Building: (−2,−8).

Speed (also called velocity – as in velociraptor) describes the change in
position per unit of time. We get to pick our favorite unit of time. Since I
don’t have a watch, I propose we use the time it takes to say ‘one thousand’
as our unit of time. This way, we can count time: 1 ‘one thousand’, 2 ‘one
thousand’, 3 ‘one thousand’, and so on. Time T takes values 1, 2, 3, 4, 5 . . .

units of time. The X-axis position of an object at time T will be denoted by
XT . The Y -axis position of an object at time T will be denoted by YT .
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Horizontal speed at time T , denoted by VXT corresponds to the change of
position between T and T + 1:2

VXT = XT+1 −XT or equivalently,
XT+1 = XT + VXT .

For instance, if X3 = −1 and VX3 = 1, then X4 = 0. If X3 = 2 and X4 = 4,
then V3 = 2.

Similarly, vertical speed at time T , denoted by VYT , corresponds to the change
of position between T and T + 1:

VYT = YT+1 − YT or equivalently,
YT+1 = YT + VYT .

Exercise 1.B Position and Speed, Speed and Position

1 The table below records the X-axis position of a tennis ball over time.
Compute the horizontal speed VX of the ball over time.

T 1 2 3 4 5
X 0 10 20 30 15

VX

What do you think happened to the tennis ball at time T = 4?

2 The table below records the Y -axis speed of an elevator over time. Com-
pute the vertical position Y of the elevator over time.

2 Units of speed are expressed in units of distance per unit of time.
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T 1 2 3 4 5 6 7
Y 0

VY 0 1 2 2 1 0

What story do the numbers in this table tell?

Make sure you can solve these practice problems confidently before turning
to the next part. In fact, you should imagine your own problems, and solve
them.

Figure 1.1: Professor Spaceman is lost in space

Let’s Code!
We will start with something simple: Professor Spaceman (Dr Spaceman’s
less famous cousin) took a wrong turn near Jupiter and is lost in space. Our
first project will simulate Professor Spaceman’s journey as he drifts around
the Solar System. We have the following use cases:

1. the user can plot the position (X,Y ) of Professor Spaceman moving at
a constant horizontal and vertical speed (VX, VY );

2. the user can change the speed of Professor Spaceman using sliders.
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In addition we will try to keep our code neat and modular. This clarifies the
logical structure of the code, and will help us recycle bits of code later on.

The key parts of the code are illustrated Figure 1.2. and are vari-
ables created to represent the horizontal and vertical position of Professor
Spaceman.

Figure 1.2: What’s going on here?

Exercise 1.C Coding Mystery

Read the code step by step from left to right. Can you guess what it will do?
What do you think the teleport at border module does?

Here is what the code does:

• The first block describes the logic of the program at a high level. When
the green flag is clicked, a “forever” loop is started. Within each itera-
tion of the loop, the set position module moves Professor Spaceman
to his X,Y location, and the update position module updates Pro-
fessor Spaceman’s position using information about his speed.
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• The second block describes the set position module. It first calls
a mysterious module teleport at border. I’ll explain this module
below. Then it sets the X-axis position of Professor Spaceman equal to
the variable and the Y -axis position of Professor Spaceman equal
to the variable .

• The third block describes the law of motion: after each unit of time vari-
able increases by amount ; variable increases by amount

.

The teleport at border module is used to keep Professor Spaceman inside
the Scratch screen (otherwise he might drift away). Whenever Professor
Spaceman hits one border of the screen, he is teleported to the opposite
border.

You can check out the project code here. You can copy it to your own account
using the [@Remix] button, and read the code using the [See Inside] button.

Exercise 1.D Coding Challenge

1 Launch the program by clicking the Green Flag. Did you correctly guess
how the program would behave?

Can you bring Professor Spaceman safely back to Planet Earth by manip-
ulating the sliders controlling his speed?

2 Can you modify the code so that Professor Spaceman spins clockwise as
he travels through space?

3 Can you add the Planet Mars in the background? Can you add ambiance
music to keep Professor Spaceman entertained?
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Chapter 2

Position, Speed, and
Acceleration

Position describes where an object is. Speed describes changes in an object’s
position. Acceleration describes changes in an object’s speed.

Acceleration is key because in real life when we interact with an object, we
do so by affecting its acceleration. Imagine that my car’s battery is dead,
and that I push it to get it started. At the beginning the car is not moving.
Its speed is zero. When I start pushing the car, speed doesn’t change instan-
taneously: it will still be very close to zero. However its speed will slowly
increase: that’s acceleration.

We will denote by AX acceleration on the horizontal X-axis, and by AY

acceleration on the vertical Y -axis. At time T acceleration on the X axis is
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equal to the change in speed between time T and T + 1:

AXT = VXT+1 − VXT or equivalently,
VXT+1 = VXT + AXT .

The same is true for the vertical acceleration of an object.

AYT = VYT+1 − VYT or equivalently,
VYT+1 = VYT + AYT .

Exercise 2.A Substract and Add

1 The table below records the X-axis position of a tennis ball over time.
Compute the horizontal speed VX, and the horizontal acceleration AX of
the ball over time. It’s easiest if you first compute all speeds, and then all
accelerations.

T 1 2 3 4 5 6
X 0 10 20 30 15 0

VX
AX

What do you think happened to the tennis ball at time T = 3?

2 A baseball flies in the air at a constant horizontal speed VX = 5. Compute
its horizontal position and acceleration using the table below.

T 1 2 3 4 5 6 7
X 0

VX 2 2 2 2 2 2
AX
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3 The baseball has a vertical speed VY = 2 at time T = 1, and a constant
vertical acceleration AY = −1. Compute the baseball’s vertical position
using the table below. It’s easiest if you start by computing all the speeds,
and then all the positions.

T 1 2 3 4 5 6 7
Y 1

VY 2
AY -1 -1 -1 -1 -1

4 On a piece of paper, plot the position (X,Y ) of the baseball studied in
problems 2 and 3 at times T = 1, · · · , 7 . You can pick your favorite unit
of distance.

What is the highest point reached by the ball? What is the ball’s vertical
speed at its highest point? Why is that?

When does the ball hit the ground (Y = 0)?

The constant negative acceleration that drives the trajectory of the baseball
in the previous exercise corresponds to what happens in reality when you
throw an object. Its initial speed is the speed it has when it leaves your
hand. After that, the object has approximately zero horizontal acceleration,
and an approximately constant negative vertical acceleration corresponding
to the gravitational pull of the earth.

Feeling confident? If yes, go to the next section. Otherwise, practice one
more time. Give yourself a table with an object’s acceleration, initial speed,
and initial position, and compute its speed and position for the next 5 or 6
periods.
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Let’s Code!
Professor Spaceman is now back on Planet Earth. Today he is training with
the US Airforce at Area 51 in the Nevada desert. We are going to simulate
what happens to Professor Spaceman when he is launched into the air using
a highly experimental rocket catapult. The project’s specs are the following:

1. Professor Spaceman’s trajectory has a horizontal acceleration AX equal
to 0, and a constant negative vertical acceleration equal to AY .

2. A user can select Professor Spaceman’s initial horizontal speed VX1,
initial vertical speed VY1, and the fixed vertical acceleration AY .

As always we will try to keep the code neat and modular. Repeat after me:
Neat and modular! Neat and modular!

Figure 2.1: Professor Spaceman enjoying a view of Area 51 from the air

The code is described in Figure 2.2. It is similar to that of Figure 1.2.
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Figure 2.2: What’s going on here?

Exercise 2.B Coding Mystery

1 Read the code step by step from left to right. Can you guess what it will
do? What is the horizontal acceleration of Professor Spaceman?

2 There are two main differences between the code of Figure 1.2 and the
code of Figure 2.2. Can you find what they are?

In Figure 1.2, we only had an udate position module: the speed was
given, and only the position was updated. In Figure 2.2, we have an update
position and speed module: both the speed and the position are updated
in each period. An other difference is the set initial conditions module:
it specifies initial conditions for Professor Spaceman’s trip into the sky. Here,
his first position is in the lower left corner.

You can check out the project here. Copy it to your own account using the
[@Remix] button.
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Exercise 2.C Coding Challenge

1 Play with the project (at first use initial values VX = VY = 3). Does it
behave the way you were expecting?

2 As time goes by, what happens to the horizontal speed VX of Professor
Spaceman? What happens to the vertical speed VY of Professor Space-
man?

3 Can you modify the code so that the horizontal acceleration is equal to
−.05? How does Professor Spaceman’s trajectory change?

4 Can you modify the code so that Professor Spaceman stops moving after
he hits the ground?

5 Can you add aliens having a picnic in the background?

17



Chapter 3

The Vomit Comet

In this chapter, we introduce force fields. I’m talking about the actual force
fields studied by physicists, not the silly force fields from science fiction
movies.

So far we have seen how to go from acceleration to speed, and from speed to
position.1 A force field is simply a description of the acceleration of an object
depending on the position of the object as well as other characteristics of the
object. The force fields we will study in the remainder of this course will
depend only on the object’s position, but in general things like an object’s
mass, electric charge and speed may affect its acceleration.

Here is a description of a force field: for every horizontal and vertical position
X and Y , AX = 0 and AY = −1. This is a pretty good description of the
force field generated by gravity around you.

1If you were a contrarian type of person, you might argue that we learned how to go from
position to speed, and from speed to acceleration.
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Here is a different force field that depends on the horizontal position of the
object:

• if X < 0 (less than zero), then AX = 0 and AY = 1;

• if X ≥ 0 (greater than or equal to zero), then AX = 0 and AY = −1.

When the object has a negative coordinate on the horizontal X-axis, the ob-
ject is accelerated upwards (say by a vertical wind tunnel). When the object
has a positive coordinate on the horizontal X-axis, the object is accelerated
downwards (say by gravity).

Exercise 3.A Trajectory in a Force Field

Consider the force field defined just above. We are interested in the trajectory
of a ping pong ball evolving in this force field, with initial position X = −2,
Y = 0, and initial speed VX = 1, VY = 0.

1 Using the table below, compute the X-axis position of the ping pong ball
over time. It is easiest to compute all speeds first, and positions second.

T 1 2 3 4 5 6
X -2

VX 1
AX 0 0 0 0

2 Using the results from problem 1 and the description of the force field
above, compute the vertical acceleration AY of the ping pong ball over
time:
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T 1 2 3 4 5 6
AY

3 Using the values of vertical acceleration AY obtained in problem 2, com-
pute the vertical speed VY and the vertical position Y of the ping pong
ball over time:

T 1 2 3 4 5 6
Y 0

VY 0
AY

In the next few chapters we are going to simulate several different force fields:
the real gravitational field described by Isaac Newton, a fantasy gravitational
force field that was not described by Newton, and a repulsive force field similar
to the one between two magnets with the same polarity.

We end this chapter by simulating another real force field: the one felt by
astronauts and scientists traveling aboard the vomit comet [1, 2].

Simulating a reduced gravity aircraft
The vomit comet – also called a reduced-gravity aircraft is a special plane
that astronauts and scientists use to train or test equipment before going to
space. I like to think of it as tennis ball that has learned to throw itself into
the air, or as the best amusement park ride ever. The plane has a target
height (say 3000 meters) and behaves like this:

1. whenever the plane is below its target height (3000 meters), the pi-
lot runs the engines at their maximum power, and points the plane
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upwards;

2. whenever the plane is above its target height (3000 meters), the pilot
shuts off the engines and glides through the air under the influence of
gravity alone.

Imaging how being on the vomit comet must feel! The reason the vomit
comet is useful to astronauts and scientists is that it allows them to safely
experience free fall. Whenever the engine is cut-off, the rocket is in free fall
– like a tennis ball flying in the air. And for scientists free fall is not just
fun: it allows them to simulate a zero-gravity environment. That’s because
when you fall, all parts of you are falling at the same time and you don’t
feel heavy anymore. Astronauts use the vomit rocket to learn how to move
around in zero-gravity. Scientists and engineers use the vomit rocket to make
sure that the machines and experiments they build for space actually work
the way they expect in zero gravity.

Figure 3.1: Professor Spaceman experiencing the joy of free fall

Let’s Code!
Simulating the vomit rocket is pretty easy, and our specs are straightforward:

21

https://en.wikipedia.org/wiki/Free_fall


• the user watches Professor Spaceman experience the joy of free fall,
with Area 51 in the background;

• a slider displays when the engine is on or off;

• the trajectory of Professor Spaceman in the air is drawn, and changes
color when the engine is on or off.

As usual, we will keep our code neat and modular. The key parts of the code
are illustrated by Figure 3.2.

Figure 3.2: What’s going on here?

This looks complicated, but it reuses many parts that you have seen already.

Exercise 3.B Coding Mystery

1 Read the code step by step from left to right. Can you guess what it will
do? What is the vertical acceleration of Professor Spaceman for Y = −60?
What is the vertical acceleration of Professor Spaceman when Y = 10?
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2 What are the differences between the code of Figure 2.2 and the code of
Figure 3.2?

I want to highlight three new things about the code:

• the apply force field module sets vertical acceleration as a function
of whether the engine is on our not;

• the choose engine status module determines whether the engine is
on or off as a function of Professor Spaceman’s vertical Y -axis position.

• the log position module (whose definition is not illustrated) plots the
position of Professor Spaceman.

The code for the simulation is here. Copy it to your account and play around
with the code for a while (say 10’ or so).

Exercise 3.C Coding Challenge

1 Does the code behave the way you expected?

2 Can you modify the code of the project so that the color is red when the
engine is on, and green when the engine is off?

3 What is the altitude of Professor Spaceman at the beginning of his tra-
jectory? What is the highest point on Professor Spaceman’s path? Is the
trajectory cyclical, i.e. does it repeat itself?

4 Professor Spaceman wants to reprogram the choose engine status mod-
ule as follows:
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Read the code through. How does this change the way the engine is
started? How do you think this will change the trajectory of Professor
Spaceman? Will he go higher or lower over time?

5 Modify the project’s code to implement Professor Spaceman’s proposal.
Simulate the vomit comet. Does Professor Spaceman’s trajectory behave
the way you expected? Is the trajectory stable? What happens when you
change the value −45 to −55? to −50?

Exercise 3.D Enigmas

1 Why do you think the reduced gravity aircraft is called the vomit comet?

2 Is it possible for Professor Spaceman to be in free fall while also having a
positive vertical speed VY > 0?
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Chapter 4

Know Your Roots

This chapter is a mathematical detour on our way to gravitation. Quite hon-
estly, it’s a difficult chapter. Do not get discouraged if you don’t understand
it very well at first. Try your best. Take some time off, skip to the next
section if you get stuck, and try it again later. In any case, prepare to be
entertained!

The reason for this detour is that to describe the gravitational force field, we
need to calculate the distance between objects in a Cartesian coordinate sys-
tem. To do this, we need to: (i) understand Pythagoras’ Theorem; (ii) learn
how to compute square roots. We will actually prove Pythagora’s Theorem
I’ll be introducing a very powerful method to solve equations: the bisection
method.
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Pythagoras’ Theorem
Consider the rectangle illustrated by Figure 4.1. The horizontal side has
length X, while the vertical side has length Y . You can think as X and Y

describing the the position of point A in relation to point O. The distance
between point O and point A – called the diagonal – is denoted by D.

Figure 4.1: rectangles are fun

Pythagoras’ Theorem states that

X2 + Y 2 = D2. (4.1)

The notation X2 (read it “X square”) is just a shortcut that means X ×X.
For instance, if X = 4, then X2 = 4× 4 = 16.

Exercise 4.A An Empirical Check

Draw 2 rectangles that look different. Measure their sides. Measure the
diagonal. Check whether Pythagoras’ Theorem holds, at least up to small
errors (accurate measurement is difficult).

Now, let us prove Pythagoras’ Theorem:

• First, consider the right triangle corresponding to the lower-right half
of the rectangle in Figure 4.2
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Figure 4.2: triangles are fun too

• Second, make four copies of this triangle and re-arrange them as in
Figure 4.3

Figure 4.3: triangles turned into squares

The outside part of Figure 4.3 is 1 big square with a side of length
X + Y . Within this big square, we can fit 1 smaller square with a side
of length D, and 4 right triangles with sides of length X and Y .

• We finish with a bit of area accounting. The area of the big square can
be computed in two ways.
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Way #1: it’s the product of the length of the two sides

area big square = (X + Y )× (X + Y )

= X × (X + Y ) + Y × (X + Y )

= X2 +X × Y + Y ×X + Y 2

= X2 + Y 2 + 2×X × Y

Way #2: it’s the sum of the area of the smaller inside square with side
of length D, plus the area of the 4 right triangles

area big square = D2 + 4× 1

2
X × Y

= D2 + 2×X × Y

Since those are two equivalent ways to describe the area of the big
square, it must be that X2 + Y 2 = D2.

That’s it! We have proven Pythagoras’ Theorem. Go through the proof a
couple of times. Maybe draw the rectangles yourself one more time. Does
every step make sense?

The reason Pythagoras’ Theorem is useful is because it’s the first step to
compute length D.

Say that X = 5 and Y = 7, Pythagoras’ Theorem implies that

D2 = X2 + Y 2 = 25 + 49 = 74.

Now we know the value of D2 = D × D. We would like to know the value
D such that D2 = 74. This value D it is called the square root of 74, and is
typically denoted by

√
74.
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The bisection method will allow us to compute D =
√
74, as well as the

solution to many other equations.

The Bisection Method
Let’s first compute by hand an approximate solution to D2 = 74. The rea-
soning is illustrated by Figure 4.4.

Step 1. We know that 8 must be less than
√
74 since 82 = 64 < 74. 9 is

greater than
√
74 since 92 = 81. This means that D =

√
74 is between 8 and 9.

We have just obtained a lower bound Dmin = 8 and an upper bound Dmax = 9

to the true value D =
√
74. The middle point Dmid = (Dmin +Dmax)/2 = 8.5

is our step 1 approximation for
√
74.

Figure 4.4: the exciting process of computing a square root

Step 2. Is the middle point 8.5 an upper or a lower bound to D? Well,
8.5 × 8.5 = 72.25 < 74. This means that we can use Dmin = 8.5 as our new
lower bound to D. Dmax = 9 remains our upper bound. The new middle
point, Dmid = (8.5 + 9)/2 = 8.75 is our step 2 approximation for

√
74.
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Step 3. Is the middle point 8.75 an upper or a lower bound to D? Well,
8.75 × 8.75 = 76.5625 > 74. This means that we can use Dmax = 8.75 as
our new upper bound to D. Dmin = 8.5 remains our lower bound. The new
middle point, Dmid = (8.5 + 8.75)/2 = 8.625 is our step 3 approximation for√
74.

This is a pretty good approximation since 8.6252 ≃ 74.39. We could keep
iterating and get an arbitrarily precise answer but let’s stop here.

Exercise 4.B Digging for Roots

1 Compute an approximation to the square root of 45 using the diagram
below

2 Choose a number between 1 and 100 and compute its square root using
the diagram below
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Let’s Code!

We finish this long, long, long chapter by coding up a general bisection solver.
The code is described Figure 4.5. You can find a working version here.

Figure 4.5: What’s going on?
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Exercise 4.C Coding Challenge

1 Read the code. Do you understand how it works? Can you relate it to the
process described Figure 4.4?

Use the project to compute the square root of 33. Verify that you got a
correct answer.

2 Can you modify the code, and then use the modified program to compute
a number D such that D ×D ×D = 100?
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Chapter 5

The Gravitational Field

Figure 5.1: Professor Spaceman feeling powerfully attracted to Planet Earth

We are now ready to tackle Isaac Newton’s theory of universal gravitation.
It’s one of the really amazing achievements of human knowledge and ingenu-
ity. It explains how the same forces that make us fall on the ground when
we jump also keep the moon up in the sky, following a stable orbit around
the earth. It’s the first great unification of different phenomena in physics.
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Consider the situation of Professor Spaceman in Figure 5.1. If we center on
Planet Earth, and Professor Spaceman has position X on the horizontal axis,
and position Y on the vertical axis. The law of gravitation says that

Professor Spaceman accelerates towards the Earth, with an ac-
celeration that is equal to a constant γ (it reads gamma) times
the inverse of the square distance D between Professor Spaceman
and the earth. In other term the intensity of the acceleration is
equal to γ/D2.

And this is the mystery. If Professor Spaceman (or the Moon for that matter)
constantly accelerates towards the earth – i.e. is falling towards the Earth
– how can it be that Professor Spaceman (or the Moon) can stay in orbit
around the Earth, rather than fall on the ground the way a apple does when
it drops from the tree? Well, it’s one of these things that is true and totally
amazing, like the fact that birds are really dinosaurs. What happens is that
Professor Spaceman is falling, but keeps missing the target.

Simulating Professor Spaceman’s movement in the gravitational force-field
will allow us to solve this mystery. Center the Earth at position (0, 0). First,
we need to get a formula for the force field Professor Spaceman is exposed to
depending on his position (X,Y ). We know from Pythagora’s Theorem that
the distance D between Professor Spaceman is

D =
√

X2 + Y 2.

To go from Professor Spaceman back to Planet Earth, you need to change
Professor Spaceman’s position D times by an amount (−X

D ,−
Y
D). Since the

distance between Professor Spaceman and the Earth is equal to D, we call
(−X

D ,−
Y
D) the unit-length vector pointing from Professor Spaceman towards

the Earth.
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The universal law of gravitation says that Professor Spaceman acceleration is
equal to γ

D2 times the unit-length vector pointing from Professor Spaceman to
Earth. More specifically, Professor Spaceman’s horizontal acceleration AX,
and his vertical acceleration AY are:

AX = γ × 1

D2
×

(
−X

D

)
= γ × −X

D3

AY = γ × 1

D2
×

(
−Y

D

)
= γ × −Y

D3
.

D3 (read it D cube) is just a shortcut for D × D × D. If D = 3, then
D2 = 2× 2× 2 = 8.

Exercise 5.A Compute with Gravity

Assume that γ = 2. At time T = 1, Professor Spaceman is at position
X1 = 1, Y1 = 2. His initial speed is VX1 = −.2, VY1 = .1.

1 Compute Professor Spaceman’s initial distance to Earth.

2 Compute Professor Spaceman’s horizontal acceleration AX1 at time T = 1.

3 Compute Professor Spaceman’s vertical acceleration AY1 at time T = 1.

4 Compute Professor Spaceman’s speed (VX2, VY2) at time T = 2.

5 Compute Professor Spaceman’s position at time T = 2.

6 Compute Professor Spaceman’s position at time T = 3.

Let’s Code!
Coding up the universal law of gravitation turns out to be straightforward.
The specs are as follows:
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• Professor Spaceman starts at a fixed position on the horizontal axis.

• The user can specify Professor Spaceman’s initial horizontal speed VX,
and vertical speed VY .

• The user can specify constant γ, also called the “the field intensity.”

• Professor Spaceman moves according to the law of gravitation.

• Professor Spaceman’s trajectory will be drawn in a color that changes
with his distance to Earth.

The important parts of the code are illustrated by Figure 5.2 (the project
code is available here).

Figure 5.2: What’s going on?
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A few modules – set initial conditions, set position, log position,
and update position and speed – are not described in Figure 5.2 because
they are very similar to the code of Figures 2.2 and 3.2.

Exercise 5.B Coding Mystery

1 Read the code of Figure 5.2 from beginning to end. How is it different from
the code of Figure 3.2? Where are the laws of gravity described? Where
are we using a square root?

2 Write down what you think the commands inside the update position
and speed module are.

3 Write down what you think the commands of the log position module
are. Remember that we want the color of the trajectory to correspond to
Professor Spaceman’s distance to the Earth.

4 Check the project code. Did you correctly guess the content of the update
position and speed and log position modules.

As Figure 5.3 shows, depending on Professor Spaceman’s initial speed, and
on the force field you choose, Professor Spaceman’s trajectory in space will
fall in two categories:

• he will stick to a stable cyclical roundish orbit around the Earth;

• alternatively, he may get close to the Earth (or not), but ultimately
will get far away, and never come back (concretely, he’ll stay stuck on
one side of the Scratch window and never come back).
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In the first case, Professor Spaceman’s trajectory is called an Ellipsis. In the
second case, it is called a Hyperbola.

(a) An Elliptical Trajectory (b) A Hyperbolic Trajectory

Figure 5.3: Will Professor Spaceman get back home for dinner?

These trajectories are essentially the same as the trajectories of planets and
comets orbiting around the Sun in our solar system. The trajectories of
planets are ellipses. Comets whose trajectory is an ellipsis, like Halley’s
Comet are called periodic. Comets whose trajectory is a hyperbola, like the
Great Comet of 1577 are called non-periodic comets. They visit the Earth
once, and never come back.

The famous astronomers Tycho Brahe, and Johannes Kepler got to see the
Great Comet of 1577 (Kepler was a kid, his mom took him to see it). Since it
will never come back again, I think they were pretty lucky. Johannes Kepler
also got to see Halley’s comet in 1607, and I got to see it in 1986. William
the Conqueror saw it in 1066, before invading England. I think it’s pretty
cool to be linked to people who have watched the same comet hundreds of
years ago. Halley’s comet will come back in 2061 – I hope to see it again!

Exercise 5.C Empirical Exploration
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1 Set VX = 0. Can you find an initial value of VY such that Professor
Spaceman’s trajectory has the same color throughout? What is the name
of this trajectory?

2 Can you find initial parameters such that Professor Spaceman’s trajectory
is an almond shaped ellipsis? Wait for the trajectory to complete.

Add a little pulse to Professor Spaceman’s speed by moving the VX speed
slider a little bit. What happens to Professor Spaceman’s trajectory?
Does it remain an ellipsis?

3 Find initial parameters such that Professor Spaceman’s trajectory is nice
almond shaped ellipsis. Wait for the trajectory to complete. Take a screen-
shot of Professor Spaceman’s trajectory a save it as a file. Open the file in
your favorite graphical editor.

Mark the points where Professor Spaceman in closest and further away
from the Earth. The closest point is called the Apogee, the furthest point
is called the Perigee.

4 Using a stopwatch, or a timer, measure the time T in seconds it takes
for Professor Spaceman to go from the Apogee and come back, making a
complete orbit. What is T? Does Professor Spaceman move faster at the
Apogee, or the Perigee?

On the screenshot you took, mark the position of Professor Spaceman T/4,
T/2 and 3T/4 seconds after leaving the Apogee.

Draw the 4 line segments going from the points you’ve marked to the center
of the Earth. This cuts the ellipsis in 4 zones. Fill each zone with a different
color. Do the areas of the 4 different zones look similar or different?

Kepler’s Second Law of Planetary Motion says that

A line joining a planet and the Sun sweeps out equal areas during
equal intervals of time.
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How does it relate to your finding?
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Chapter 6

Two Easy Pieces

OK, the previous Chapter was long. So now we take a little break and have
fun with two easy projects.

Fantasy Gravitation
First, we imagine a completely different universe in which the gravitational
field is not proportional to the inverse of the distance square, 1/D2. Instead,
imagine the gravitational field is proportional to the inverse of the distance,
1/D. What would the trajectory of the Earth around the Sun (or Professor
Spaceman’s trajectory around the Earth) look like?

Well, you can pretty much do it on your own.

Exercise 6.A Coding Challenge

1 What part of the code of Figure 5.2 do you need to change?
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Figure 6.1: Professor Spaceman, wondering why gravity feels different today

2 Create a copy of the previous gravitation project, and change the code in
the way you think is correct.

Check out the code here. Does it correspond to what you wrote?

3 Play around with parameters. How would you describe Professor Space-
man’s trajectory to someone else? Write a short paragraph.

A Repulsive Force Field
Coulomb’s Law describes the interaction between electrically charged parti-
cles. It turns out that like gravity: (i) the electrostatic force is parallel to the
line segment between the two particles; (ii) it is inversely proportional to the
square distance between the two particles.

However, while the force of gravity always pushes objects towards one an-
other, the electrostatic force is attractive only when one object is positively
charged while the other is negatively charged. If both objects are positively
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charged or negatively charged, then the force is repulsive: it pushes the ob-
jects away from one another.

How would you simulate the movement of a negatively charged magnet mov-
ing near another fixed negatively charged magnet?

Figure 6.2: Fun with magnets

Exercise 6.B Coding Challenge

1 What part of the code of Figure 5.2 do you need to change?

2 Create a copy of the previous gravitation project, and change the code in
the way you think is correct.

Check out the code here. Does it correspond to what you wrote?

3 How would you simulate the movement of a negatively charged magnet
moving near a positively charged magnet?
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Chapter 7

The Vomit Comet Earns Its
Name

Figure 7.1: Professor Spaceman, having an unpleasant dream

Professor Spaceman is having a nightmare about flying on the vomit comet.
First, he somehow showed up to NASA in his underwear…Second, he had
three extra-cheese pizzas for breakfast and the acceleration is making him
feeling queasy. He…is…about…to…barf!
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In this chapter, we will simulate the trajectory of Professor Spaceman’s barf,
as Professor Spaceman experiences the joy of free fall. For the simulation,
we are going to to assume that both Professor Spaceman and his barf both
accelerate upwards when the engine is on. This is what would happen if the
engine was really a big fan on the ground, like in a vertical wind tunnel.

Professor Spaceman and his barf evolve in the following force fields:

1. Professor Spaceman evolves in the vomit comet force field described in
Chapter 3;

2. The barf evolves in a force field combining both the vomit comet force
field described Chapter 3 and the gravitational force field generated
by Professor Spaceman, similar to the force field generated by Earth’s
gravity in Chapter 5.

Note that because Professor Spaceman is much heavier than his barf we are
neglecting the impact of the barf’s gravity on Professor Spaceman’s trajec-
tory. We are also ignoring the propulsion experienced by Professor Spaceman
at the time he barfs.

Exercise 7.A Relative Distance

1 Say that Professor Spaceman has coordinates X = 50 and Y = 70, while
the barf has coordinates X ′ = 80 and Y ′ = 30. What is the horizontal and
vertical movement ∆X and ∆Y needed to go from Professor Spaceman to
his barf?

2 What is the distance between Professor Spaceman and his barf?
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Let’s Code!
Our specs for the code are as follows:

• Professor Spaceman evolves according to the code of Chapter 3;

• Professor Spaceman barfs when the user presses the space bar;

• The barf evolves according to a force field that combines the force
field of the vomit comet, and the force field generated by Professor
Spaceman’s gravity.

As far as Scratch code goes, Professor Spaceman and the barf will correspond
to two different sprites. The code for the barf sprite is described in Figure
7.2

Exercise 7.B Coding Mystery

1 Read the code of Figure 7.2 from beginning to end. How is it different
from the code of Figure 5.2?

2 The role of the launch barf module is to increase the barf’s horizontal
speed by a small amount. Write what you think is inside the launch barf
module.

3 Try and draw what you think the trajectory of Professor Spaceman and
his barf will be.

4 Checkout the project online and play with it for a while. Does the code
correspond to what you expected?
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Figure 7.2: The serious business of modeling barf

Try launching the barf at different points of Professor Spaceman’s trajec-
tory. What different types of barf trajectories do you see?
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5 A dynamic system is said to be ‘chaotic’ if slightly different initial condi-
tions lead to very different behavior. Is the barf’s trajectory chaotic? In
contrast is the trajectory of Professor Spaceman in Chapter 5 chaotic?

Exercise 7.C Coding Challenge

1 Can you simulate the trajectory of the barf under the fantasy gravity of
Chapter 6?

2 Can you change the color of the barf’s trajectory so that it changes with
the horizontal speed of the barf?
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Chapter 8

Sun, Earth, and Moon

Figure 8.1: Time to shine…

In this Chapter you are on your own! The challenge is to simulate the motion
of the Earth orbiting around the Sun, and of the Moon orbiting around the
Earth and Sun. This can be done by reusing parts from previous projects:

• The motion of the Earth around the Sun roughly corresponds to the
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motion of Professor Spaceman around the Earth in Chapter 5.

• The motion of the Moon around the Earth (and the Sun) roughly corre-
sponds to the motion of the barf around Professor Spaceman in Chapter
7

It’s OK to make a few simplifications:

• First, because the Sun is much heavier than the Earth, and the Earth
is much heavier than the Moon, we are ignoring the gravitational pull
of the Earth on the Sun, and the pull of the Moon on the Earth (in
practice, the Moon has a significant influence on the Earth: tides).

• Second, we assume that the distance between the Moon and the Sun is
roughly equal to the distance between the Earth and the Sun, so that
the force field of the Sun’s gravity is the same for the Earth and the
Moon.

The specs for the project are the following:

1. The Earth’s acceleration is set by the gravitational field of the Sun;

2. The Moon’s acceleration is the sum of accelerations from the Sun’s
gravity and the Earth’s gravity;

3. The intensity of the Earth’s force field and the Sun’s force field can be
set using sliders;

4. The Earth’s trajectory is painted in blue;

5. The Moon’s trajectory is painted in gold.
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Exercise 8.A Ultimate Coding Challenge

1 Reusing code from Chapters 5 and 7, simulate the trajectory of the Earth
and the Moon around the Sun.

2 How would you modify the code to correctly reflect the fact that the Sun’s
gravitational pull on the Moon depends on the distance between the Moon
and the Sun, rather than the Earth and the Sun?

Implement those changes in a new project. Does the Moon always stay
close to the Earth?
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