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Abstract

This paper studies the problem of experiment design by an ambiguity-averse decision-
maker who trades off subjective expected performance against robust performance
guarantees. This framework accounts for real-world experimenters’ preference for ran-
domization. It also clarifies the circumstances in which randomization is optimal: when
the available sample size is large and robustness is an important concern. We apply
our model to shed light on the practice of rerandomization, used to improve balance
across treatment and control groups. We show that rerandomization creates a tradeoff
between subjective performance and robust performance guarantees. However, robust
performance guarantees diminish very slowly with the number of rerandomizations.
This suggests that moderate levels of rerandomization usefully expand the set of ac-
ceptable compromises between subjective performance and robustness. Targeting a
fixed quantile of balance is safer than targeting an absolute balance objective.
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1 Introduction

The proliferation of experiments in academia, business, and public policy has been accom-

panied by spirited debates about best practices for experiment design and the analysis of

experimental results. Topics of debate include pre-registration of experiment designs, pre-

analysis plans, the pros and cons of rerandomization, clustering, stratification, and statistical

significance testing (Duflo et al., 2008; Bruhn and McKenzie, 2009; Deaton, 2010; Imbens,

2010; Humphreys et al., 2013; Olken, 2015; Athey and Imbens, 2017; Benjamin et al., 2018).

At the heart of these debates are different—usually implicit—models of both knowledge

generation and how people interpret experimental evidence. Moreover, classical models

of experimentation—in which decision-makers are subjective expected utility maximizers—

cannot explain the strong preference for randomized controlled trials (RCTs) expressed by

experimenters (Kasy, 2016; Savage, 1954).1

This paper seeks to help clarify these debates. We propose an instrumental model of

experimentation in which a decision-maker collects experimental data in order to improve

decisions under uncertainty. A key step, which allows us to account for randomization, is to

model the decision-maker as ambiguity averse. Specifically, we use the maxmin framework

of Gilboa and Schmeidler (1989), reformulated as the problem of a Bayesian decision-maker

seeking to satisfy an adversarial audience. Examples of adversarial audiences abound: the

Food and Drug Administration for drug trials, seminar audiences and journal referees for

research papers, and governments or NGOs for public policy proposals.2 This intuitive

reinterpretation of Gilboa and Schmeidler (1989) (also known as the ε-contamination model;

Huber, 1964) facilitates meaningful comparative statics.

The paper reports two main sets of results. The first set shows that randomized ex-

1RCTs are mixed strategies over experimental assignments. As a result they can never be strictly op-
timal for a subjective expected utility maximizer. For seminal contributions to the economic literature on
experimentation and information acquisition, see Rothschild (1974); Grossman and Stiglitz (1980); Aghion
et al. (1991); Bergemann and Välimäki (1996); Persico (2000); Bergemann and Välimäki (2002, 2006).

2The audience may also be seen as a stand-in for the decision-maker’s self-doubt.
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periments can be strictly optimal for a decision-maker facing an adversarial audience, and

clarifies the circumstances in which this is the case. If the decision-maker cares sufficiently

about the adversarial audience, and the sample size is sufficiently large, then it is strictly

optimal for the decision-maker to use a randomized experiment. Specifically, all determin-

istic experiments are bounded away from the first-best, while a standard RCT approaches

first-best up to a loss that is vanishing in the sample size. On the other hand, deterministic

experiments are generically strictly optimal when the sample size is small and the decision-

maker puts sufficiently high weight on her own subjective expected utility.

This set of results accords with the observed heterogeneity in experimental practice.

Randomized experiments tend to be used by decision-makers who put a high value on con-

vincing an adversarial audience—for example, scientists and pharmaceutical companies—or

when the decision-maker can afford large samples—for example, A/B testing in online mar-

keting. When data points are few and the decision-maker puts little weight on satisfying

an adversarial audience—for example, the CEO of a privately held firm deciding whether

to adopt a new production technology—optimal experiments are deterministic and optimize

the subjective informational value of each data point.

Our second set of results applies our model to an open issue in experiment design: whether

or not to rerandomize to improve covariate balance between treatment and control groups.

Rerandomization draws multiple treatment assignments, then chooses the one that max-

imizes a prespecified balance objective. For example, a medical researcher may want to

ensure that treatment and control groups are similar in terms of gender, age, race, and base-

line health variables such as blood pressure and weight (Morgan and Rubin, 2012). Despite

the ease of using rerandomization to improve balance, researchers are concerned that it may

adversely affect the reliability of findings (Bruhn and McKenzie, 2009).

We show that the tradeoffs at the heart of rerandomization are concisely captured in our

framework. Successive rerandomizations improve balance, which can be expressed through

the subjective expected utility component of preferences. However, rerandomization reduces
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the robust performance guarantees offered by RCTs. In the extreme case where the allocation

is rerandomized until perfect balance is achieved, the allocation is effectively deterministic

and worst-case performance guarantees are bounded away from first-best, even for large

samples. In contrast, losses against the first-best are vanishing in sample size N provided

the number of rerandomizations is polynomial in N . We clarify the potential robustness costs

of alternative procedures used to achieve balance: setting a balance target and rerandomizing

until it is met (Morgan and Rubin, 2012); or equivalently, selecting an assignment uniformly

from a constrained set of assignments achieving a pre-specified balance objective.

Our framework builds on a long line of work in statistics, starting with Wald (1950). Vari-

ants of Wald’s framework have been used in economics and econometrics to study questions

of identification and model uncertainty (Gilboa and Schmeidler, 1989; Hansen and Sargent,

2001; Manski, 2004, 2009; Marinacci, 2015; Kitagawa and Tetenov, 2018).3 Different ap-

proaches to model uncertainty—specifically ambiguity aversion or regret aversion—remain

an ongoing subject of debate in this literature. Ambiguity aversion has more attractive nor-

mative foundations (see, for example, Marinacci, 2015), while regret aversion is more directly

prescriptive. We state our main results under ambiguity aversion but show that they also

hold when using regret aversion. In fact, the latter framework allows to dispense with certain

technical assumptions, as well as rationalize the practice of null-hypothesis statistical test-

ing (NHST; Tetenov, 2012). In a related paper, Banerjee et al. (2017), three of the authors

provides a non-technical discussion of our results on randomization, and a limited discussion

of our results on rerandomization.

The paper is structured as follows. Section 2 introduces our framework. Section 3 delin-

eates the forces that determine whether running a randomized or deterministic experiment

is optimal. Section 4 studies the tradeoffs involved in rerandomization. Section 5 shows that

our results extend to reference-dependent preferences, better suited to explain the use of

3This paper is also related to the dormant literature in multi-Bayesian statistical decision theory (Weera-
handi and Zidek, 1981, 1983). In these models, Bayesians with conflicting preferences adopt random decision
rules, rather than randomized experiments.

4



NHST in decision-making. Section 6 contains several discussions: of other possible rational-

izations of randomization, of the positive implications of our theory, of practical implications

for rerandomization, and of possible directions for future research. Appendix A extends our

analysis to dynamic settings where participants arrive over time, and experimenters must

choose treatment assignments in real time, without knowing what the ultimate sample of

covariates will be.4

2 Model

In this section, we first lay out the problem of experiment design along lines similar to

Banerjee et al. (2017). We then specify the preferences and beliefs of the decision-maker.

2.1 A Framework for Studying Experiment Design

Decisions and payoffs. A decision-maker chooses whether or not to provide a treatment

τ ∈ {0, 1} to a population of heterogeneous individuals. For simplicity, we assume that the

final policy choice a ∈ {0, 1} is all-or-nothing and sets τ = a for all individuals. Potential

outcomes for individual i with treatment status τ are random variables yτi ∈ {0, 1}; y = 1

is referred to as a success. Each individual has observable covariates xi ∈ X that affect the

distribution of outcomes yi. Covariates xi are uniformly distributed in X.

The probability of success, given treatment τ and covariate x, is denoted by pτx ≡
Prob(yτ = 1|x). The state of the world is described by the finite-dimensional vector

p = (p0
x, p

1
x)x∈X ∈ [0, 1]2X ≡ P of success probabilities pτx conditional on treatment sta-

tus τ ∈ {0, 1} and covariate x. Outcomes yτi for different individuals are drawn indepen-

dently given state of the world p. Note that state-space P is compact, convex, and finite-

4Online Appendix B clarifies that a traditional balance objective—minimizing the Mahalanobis distance
between mean covariates across treatment and control samples—coincides with subjective expected utility
maximization under specific priors. Online Appendix C clarifies how regret aversion can rationalize the use
of NHST. Proofs are contained in Online Appendix D. Online Appendix E presents simulations.
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dimensional. Given a state p and a policy decision a ∈ {0, 1}, the decision-maker’s payoff

u(p, a) is

u(p, a) ≡ Epya =
1

|X|
∑
x∈X

pax.

Although covariates x are observable, our framework is consistent with unobservable char-

acteristics. Denoting unobserved characteristics by z, and given a joint distribution F over

(x, z) we have pτx =
∫
pτx,zdF (z|x). When x and z are embedded in Rk, our framework

captures traditional concerns over omitted variables by allowing the mapping x 7→ pτx from

observed covariates to outcomes to be discontinuous. Even if pτx,z is continuous in (x, z),

omitted variables cause x 7→ pτx to become discontinuous when the distribution of z condi-

tional on x changes rapidly. That is, when individuals with similar values of x may have

very different values of z.5

Experiments and strategies. To maximize her odds of making the correct policy choice,

the decision-maker can run an experiment on N participants, which are a representative

sample of a broader population. The decision-maker chooses a treatment status τi for each

participant i, observes outcomes yτii , and then makes a policy decision a that applies to the

entire broader population.

We simplify away the problem of representative sampling by taking as given the covariates

(xi)i∈{1,...,N} of experimental participants and assuming that they are exactly representative

of the underlying set of types. That is, we assume that N = |X| and {xi}i∈{1,··· ,N} = X. This

means that random sampling is not needed to ensure that experimental participants are rep-

resentative of the overall population. This assumption is consistent with the Neyman-Rubin

“potential outcomes” framework (Neyman, 1923; Rubin, 1974). Each person i is unique and

cannot be observed in both the treated and untreated state. This assumption simplifies ex-

position and focuses on randomness in treatment assignment as the only random component

of experiment design. Under this exact sampling assumption, the broader population can be

5That is, F (z|x) is not continuous in x.
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thought of as identical copies of the experimental sample.6

Given covariates (xi)i∈{1,··· ,N}, an experimental assignment is a tuple e = (τi)i∈{1,...,N} ∈
{0, 1}N ≡ E. Experiment e generates outcome data y = (yi)i∈{1,...,N} ∈ {0, 1}N ≡ Y , with

yis independent realizations of yτii given (xi, τi). We say that a covariate and treatment pair

(x, τ) ∈ X × {0, 1} is sampled by experiment e—denoted by x, τ ∈ e—if and only if there

exists i ∈ {1, · · · , N} such that (xi, τi) = (x, τ).

The decision-maker’s strategy consists of both an experimental design E ∈ ∆(E), which

is a mixed strategy over experimental assignments e, and an allocation rule α : E × Y →
∆({0, 1}), which maps experimental data (e, y) to policy decisions a ∈ {0, 1}. We denote by

A the set of such mappings α.7

The standard RCT. For simplicity, we assume that N/2 is an integer throughout the

paper. An experiment design of interest is the standard RCT, assigning 50% of participants

to treatment τ = 1.8 It corresponds to the strategy (Erct, αrct):

• Erct draws an exchangeable profile (τi)i∈{1,...,N} ∈ {0, 1}N of treatment assignments

such that
∑N

i=1 τi = N/2,

• Policy a is chosen according to the empirical success rule: αrct(e, y) ≡ 1y1≥y0 , where

yτ ≡ 2
N

∑N
i=1 yi1τi=τ is the mean outcome for participants with treatment status τ .

Note that policy choice αrct is deterministic conditional on experimental outcomes: per-

formance guarantees for RCTs established here stem from random assignment, not random

policy-making.

2.2 Preferences and Beliefs

6Our results extend when N < |X| and experimental participants are randomly sampled from X according
to the underlying distribution of covariates.

7Following standard notation, for any σ ∈ ∆({0, 1}), u(p, σ) ≡ Ea∼σ[u(p, a)].
8The analysis extends to experiments assigning any fixed share π ∈ (0, 1) to treatment. Bounds use the

reduced sample N ′ = 2 min{π, 1− π}N obtained by dropping excess data points in the larger subsample.
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The experiment designer’s preferences and beliefs are at the heart of our analysis. As noted

in the Introduction, subjective expected utility maximization does not yield strict preferences

for randomization. Ambiguity aversion does, under conditions explored below.

Preferences. We consider an ambiguity-averse decision-maker that chooses strategy (E , α)

to maximize:

λEh0,E [u(p, α(e, y))] + (1− λ) min
h∈H

Eh,E [u(p, α(e, y))]. (DP)

where H is a set of priors h ∈ ∆(P ) over states p ∈ P . These preferences coincide with the

standard maxmin model of Gilboa and Schmeidler (1989): the decision-maker’s objective

can be expressed as minh∈H0 Eh,E [u(p, α(e, y))], with H0 ≡ {λh0 + (1 − λ)h′|h′ ∈ H}. This

parameterization, known as the ε-contamination model of Huber (1964, 2010), is popular in

the robust statistics literature, with λ serving as a tuning parameter. It lets us emphasize

subjective expected utility maximization as a special case (λ = 1), and facilitates comparative

statics.

Representation (DP) of the standard maxmin model admits an intuitive interpretation:

a subjective-expected-utility maximizing decision-maker, with prior h0, faces an adversarial

audience of Bayesian stakeholders with non-common priors h ∈ H. Note that heterogeneous

priors within the audience are essential: if the audience entertained a common prior h, then

the decision problem would reduce to subjective expected utility maximization for the mixed

prior λh0 + (1− λ)h. If λ = 1, the decision-maker does not care about the audience, and we

recover the standard subjective expected utility, or Bayesian model. Throughout the paper,

we interpret results in terms of an adversarial audience, but it is equally appropriate to view

decision problem (DP) as a model of the experimenter’s internal doubt.

Beliefs. Our main assumption concerns the set of priors H entertained by audience mem-

bers. We assume that for any given experiment e, there exists a welfare-minimizing prior h

such that knowing, without error, the success rates (pτx)x,τ∈e for pairs (x, τ) sampled by ex-
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periment e is not sufficient for efficient decision-making. Denoting the expected probability

of success given policy a ∈ {0, 1} by pa ≡ 1
|X|
∑

x∈X p
a
x, the assumption is:

Assumption 1 (limited extrapolation). There exists ξ > 0 such that, for all e ∈ E, there

exists a prior h ∈ arg minh∈H Eh(maxa∈{0,1} p
a) such that

Eh
[

max
a∈{0,1}

pa − max
a∈{0,1}

Eh [pa|(pτx)x,τ∈e]
]
≥ ξ.

Note that, for any experiment e, (pτx)x,τ∈e is an upper bound, in the sense of Blackwell

(1953), of the information generated by experiment e. Eh [pa|(pτx)x,τ∈e] is the expected payoff

of action a from the perspective of a decision-maker with initial prior h after observing the

true success rate pτx for each pair (x, τ) sampled by the experiment. For any deterministic

experiment e, the limited extrapolation assumption implies there exists a pernicious prior h

such that data from sampled pairs (x, τ) ∈ e does not permit extrapolation to the optimal

policy for the entire population.

A key implication of Assumption 1 is that audience members cannot be arbitrarily pes-

simistic. They cannot be certain that both treatment and control would result in certain

failure. If this were the case, nature would minimize the decision-maker’s welfare using the

prior p1 = p0 = 0, which makes experimentation worthless.

It is useful to point out two specific features of our modeling exercise. The first is that

any comparative static exercise in which the sample size N grows, while Assumption 1 is

maintained for ξ > 0 fixed, also requires type space X to grow with N . If a finite type space

X was held fixed while N grew then all pairs (x, τ) could be sampled by a deterministic

experiment when N is sufficiently large. The second feature is that Assumption 1 becomes

unnecessary in an alternative model in which the decision-maker exhibits regret aversion,

rather than ambiguity aversion, as described in Section 5. A key advantage of regret aversion

is that the priors that minimize the decision-maker’s welfare must still allow for the possibility

of learning. Otherwise there is nothing to regret. The main disadvantage of regret aversion
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is that it may lead to intransitivity for some choice problems (Marinacci, 2015).

The following lemma establishes that the set of priors satisfying Assumption 1 is non-

empty. The proof is by construction: it contains an example that is useful for understanding

the content of the limited extrapolation assumption.

Lemma 1 (existence and example). There exists a set of priors H that satisfies limited

extrapolation for parameter ξ = 1
8
.

Proof. Consider all pairs (X ′, τ), with X ′ ⊂ X satisfying |X ′| = |X|/2, and τ ∈ {0, 1}.
Such a pair specifies a set of covariates and a single treatment status. For each pair (X ′, τ),

consider the prior hX′,τ such that if x /∈ X ′ or τ̃ 6= τ then pτ̃x = 1
2
. If x ∈ X ′ and τ̃ = τ ,

then the prior over this pair is given by pτ̃x = 1+σ
2

where σ takes values 1 and −1 with equal

probability. Note that σ takes a single value for all such pairs (x, τ̃). Set H is the set of such

priors hX′,τ .

Set H satisfies limited extrapolation. First, the expected value Eh(maxa∈{0,1} p
a) is con-

stant and equal to 5/8 for all h ∈ H. This implies that argminh∈H Eh(maxa∈{0,1} p
a) = H.

Next, for any deterministic experiment e there exists a prior h ∈ H such that decision-

making is bounded away from first-best. As N = |X|, there must exist X ′ and τ ∈ {0, 1}
such that no pair in X ′ × {τ} is sampled by deterministic experiment e. Thus, under the

corresponding belief hX′,τ , data generated by experiment e carries no information about the

sign of σ. As a result, for all τ ∈ {0, 1}, maxa∈{0,1} p
a − pτ = 1

4
with probability 1/2. Thus,

limited extrapolation holds for ξ = 1/8.9

Two points raised by the proof are worth highlighting. First, in order to ensure that

Assumption 1 is non-empty, |X| needs to be larger than N/2—we assume |X| = N . Second,

pernicious priors are such that non-sampled pairs (x, τ) create significant residual uncertainty

9Note that H in this example will continue to satisfy Assumption 1 even if it is expanded by adding other
priors as long as Eh′(maxa∈{0,1} p

a) ≥ 5/8 for each added prior h′.
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about the correct treatment. As deterministic experiment e provides no information about

these pairs, this uncertainty is not resolved by the experiment.

3 Optimal Design and Randomization

This section shows that both deterministic and randomized experiments can be strictly

optimal for a decision-maker solving (DP). Which type of experiment is optimal depends

on the sample size N and the weight λ given to subjective performance Eh0u(a, p), versus

worst-case performance guarantees minh∈H Ehu(a, p).

3.1 Bayesian Experimentation

When λ = 1, the decision-maker is a standard subjective expected utility maximizer. In this

case, it is known that deterministic experiments are weakly optimal. In fact, we show that for

generically every prior h0 under which all data points are valuable, deterministic experiments

are strictly optimal. We use the topological version of genericity—that is, open, dense sets—

under the total variation distance over distributions—d(h, h′) ≡ sup A⊂P
A meas.

|h(A) − h′(A)|—
sometimes described as the statistical distance.

We assume that the decision-maker values every data point. Formally, for any deter-

ministic experiment e ∈ E, let e−i denote the experiment in which sample point (xi, τi) has

been removed. Let E−1 = {e−i | i ∈ {1, . . . , N}, e ∈ E} denote the set of experiments with

samples of length N − 1. We denote by A−1 the set of policy rules mapping an experiment

e ∈ E−1 and outcomes y ∈ {0, 1}N−1 to ∆({0, 1}).

Definition 1. We say that all data points are valuable under prior h0 whenever

max
α∈A

max
e∈E

Eh0 [u(p, α(e, y))|e] > max
α∈A−1

max
e∈E−1

Eh0 [u(p, α(e, y))|e].
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That is, when all data points are valuable under prior h0, reducing the sample size reduces

the quality of decision-making. This holds automatically if there is some cost of acquiring

data points and the sample size N is chosen optimally by the decision-maker. However, as

N is exogenously given here, we assume all data points are valuable. This rules out trivial

indifferences between experiments.

Proposition 1 (near-Bayesians do not randomize). For every prior h0, if λ = 1, then there

exists a deterministic experiment e∗ solving (DP).

For generically every prior h0 such that all data points are valuable, there exists λ ∈ (0, 1)

and a deterministic experiment e∗ such that, for all λ > λ, e∗ is uniquely optimal.

That is, when all data points are valuable, a deterministic experiment is generically

strictly optimal when λ = 1, and also when the decision-maker puts a small, but non-

zero, weight 1 − λ > 0 on the preferences of her audience.10 In recent work, Kasy (2016)

uses a similar result to argue that RCTs may be suboptimal. Instead, we believe that

Proposition 1 shows the limits of subjective expected utility maximization as a positive

model of experimenters.

3.2 Adversarial Experimentation

We now examine the case where the experimenter cares about her audience’s preferences.

We reiterate that the type space X must grow with N in order to maintain Assumption 1

for a fixed value ξ > 0, and that H0 ≡ {λh0 + (1− λ)h | h ∈ H}.

Proposition 2. Take weight λ ∈ (0, 1) and parameter ξ > 0 in Assumption 1 as given. There

exists N such that for all N ≥ N , and all decision problems (DP) satisfying Assumption 1

with parameter ξ, optimal experiments are randomized. More precisely, the following hold:

10Here genericity applies relative to the set of priors under which all data points are valuable. Note,
however, that this is an open set under the statistical distance. Hence, the set of priors satisfying the second
half of Proposition 1 is in fact open within the set of all priors.
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(i) For any N , any optimal experiment design E∗ satisfies

max
α∈A

min
h∈H0

Eh,E∗ [u(p, α(e, y))] ≥ min
h∈H0

Eh
[

max
a∈{0,1}

u(p, a)

]
−
√

1

N
.

(ii) All deterministic experiments e ∈ E are bounded away from first-best:

∀e ∈ E, max
α∈A

min
h∈H0

Eh,e [u(p, α(e, y))] < min
h∈H0

Eh
[

max
a∈{0,1}

u(p, a)

]
− (1− λ)ξ.

Point (i) shows that the efficiency loss of the optimal experiment compared to the first-

best decision is bounded above by a term of order 1/
√
N . This performance bound is

potentially attained by several experiment designs, including the standard RCT: (Erct, αrct).

Point (ii) shows that the loss from a deterministic experiment is bounded below by (1−λ)ξ,

where ξ is defined by Assumption 1. Hence, taking ξ as given, there exists N such that for

all N > N the optimal experiment is not deterministic; it is randomized. Note that this is

not an asymptotic result: threshold N is the lowest value such that
√

1
N
< (1− λ)ξ.

The traditional interpretation of an ambiguity-averse decision-maker’s problem as a zero-

sum game played against nature can be used to understand the value of randomization. The

decision-maker selects an experimental design E and a decision rule α, while nature picks

the prior h to minimize the decision-maker’s payoff. If there is a known pattern in the

choice of experimental assignments, nature can exploit the pattern to lower the decision-

maker’s payoff. Randomization eliminates patterns that nature can exploit. This is related

to the fact that ambiguity-averse agents may have preferences for randomization even if they

exhibit risk-aversion over known lotteries (Saito, 2015).11 In our context, for large sample

size N , the Bayesian component of preferences is close to the first-best for any prior. Thus,

the subjective benefits of running a deterministic experiment are small. In contrast, under

Assumption 1, the impact of randomization on robust payoff guarantees is bounded away

from 0.

11A key modeling choice here is that nature cannot observe the outcome of the decision-maker’s random-
ization before picking a prior. Kasy (2016) assumes that nature observes the outcome of the experimenter’s
randomization and then picks a prior, which renders randomization useless.
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Randomization can also be seen as a way to get parties with divergent priors to agree

on a design. Such stakeholders need not be satisfied by any given deterministic experiment:

there may always exist a prior under which the experiment’s design is badly flawed. Running

a randomized experiment guarantees each stakeholder that, in expectation, the final decision

will be close to optimal from her perspective.

Regardless of the interpretation, our results emphasize the importance of actual random-

ization. Assignments that are only “nearly” random, such as assignment based on time of

day (see Green and Tusicisny, 2012, for a critique), or alphabetical order (as in the case of

Miguel and Kremer, 2004; see Deaton, 2010 for a critique), remain problematic under some

adversarial priors.12 Randomization provides ex ante performance guarantees even under

the most skeptical priors. Approximate randomization does not.

3.3 Standard RCTs as a Rule of Thumb

A well known corollary of the proof of Proposition 2 (see, for example, Manski, 2004) is that

the standard RCT (Erct, αrct) leads to near optimal decisions under every prior.

Corollary 1. Experimentation policy (Erct, αrct) is such that for all priors h ∈ ∆(P ),

Eh,Erct [u(p, αrct(e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
−
√

1

N
.

This result implies that a standard RCT guarantees approximately optimal decision-

making for both Bayesian and ambiguity-averse decision-makers.13 Importantly, the decision-

maker does not even need to specify her own preferences. When sample N is large enough, a

12Specifically, Miguel and Kremer (2004) stratify by administrative unit before assigning schools to three
treatment groups according to alphabetical order. A later paper argues that these precautions allowed for
valid inference (Baird et al., 2016). Still, the Deaton (2010) critique provides an example of the challenge
an adversarial prior can pose for non-randomized designs.

13Note that Corollary 1 holds even in models where |X| is arbitrarily large compared to N , provided
covariates are sampled in a representative way. As outcomes are bounded, it is not possible for rare—and
therefore hard to sample—covariate realizations to have a substantial impact on payoffs.
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RCT is near optimal for all parameters λ and sets of priors H. Note also that the corollary

holds using the deterministic empirical success rule αrct(e, y). This shows that the robustness

of RCTs stems from random assignment, not random policy-making.

Together with Proposition 2, Corollary 1 makes the following predictions about exper-

imenter preferences when the sample size is large and robustness is a concern. First, ex-

perimenters strongly prefer standard RCTs over any deterministic experiment.14 Second,

while the standard RCT need not be exactly optimal, the marginal improvement from using

the exactly optimal random design is small compared to the improvement from using the

standard RCT over a deterministic design. Note that while standard RCTs are also near

optimal under a subjective expected utility model, such a model does not rationalize the

strong preferences for randomization that experimenters exhibit in practice. In economics,

randomization frequently requires costly negotiations with implementation partners. Fur-

thermore, randomization comes at the cost of balance, which experimenters clearly care

about, as revealed by covariate collection efforts.

4 Rerandomization

As noted above, a standard RCT is only a near-optimal solution to (DP). With small

probability, it may result in unbalanced assignments that provide little real opportunity for

learning under reasonable priors. To improve balance, treatment assignment needs to be

non-exchangeable: if someone with particular covariates is assigned to treatment, then a

participant with similar covariates should be assigned to the control group.

In practice, experimenters sometimes resolve this difficulty through rerandomization:

they repeatedly randomize until they obtain an assignment that satisfies their balance objec-

tive. As Bruhn and McKenzie (2009) highlight, this practice is widespread, poorly theorized

14Cardinal measures of the intensity of experimenter preferences could be obtained by letting the experi-
menter trade-off the choice of her preferred experiment design against making policy decision a at random
with some probability.
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and—in principle—a substantial deviation from one-shot randomization.

Our framework is well suited to clarify the tradeoffs involved in rerandomization: it

improves the subjective value of experiments at some cost to robustness. We argue that,

used in moderation, rerandomization provides a simple way to trade off the subjective value

of an experiment design for tolerable losses in robustness. Rerandomization captures what

may be an important aspect of optimal solutions to (DP)—it correlates assignment across

participants. It provides an expanded class of rules-of-thumb that lets experimenters trade off

subjective performance versus robust performance guarantees, while ensuring near-optimal

performance along both objectives.

We discuss two approaches to rerandomization: K-rerandomization, which allows for a

fixed number K of rerandomizations, and balance-targeting rerandomization, which sets a

specific balance target for the assignment, and draws independent assignments until that

target is reached.

4.1 K-rerandomized Experiments

K-rerandomized experiments extend the standard RCT. As in our previous analysis, we fix

the policy rule α to be the empirical success rule: αrct(e, y) = 1y1≥y0 .

Given a profile of covariates (xi)i∈{1,...,N}, K-rerandomized experiment design EK takes

the following form:

1. Independently draw K assignments {e1, · · · , eK} with each ek = (τi,k)i∈{1,...,N} an ex-

changeable assignment such that 50% of participants receive treatment τ = 1.

2. Select an assignment e∗K ∈ argmaxe∈{e1,··· ,eK} Eh0 [u(p, αrct(e, y))] that maximizes the

decision-making value of experiment e under prior h0.15

3. Run experiment e∗K , generating outcomes yK .

4. Choose a policy a ∈ {0, 1} according to αrct.

15An assignment is selected with uniform probability if multiple assignments maximize subjective perfor-
mance.
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More generally, one could replace the objective Eh0 [u(p, αrct(e, y))] in stage 2 by any utility

function B : e ∈ E 7→ B(e) ∈ R defined directly over experimental assignments. Propositions

3 and 4 (below) hold for this more general class of experiment designs.

We discuss two practical aspects of rerandomization in Appendices. First, Appendix A

extends our analysis of rerandomization to sequential settings where participants arrive one

after the other, and treatment must be chosen in real time. This makes balance more difficult

to achieve. Second, Online Appendix B describes priors h0 under which maximizing subjec-

tive expected utility term Eh0 [u(p, αrct(e, y))] coincides with a standard balance objective:

minimizing the Malahanobis distance between mean covariates across the treated and control

groups (Rubin, 1980; Cochrane and Rubin, 1973; Rubin, 1979; Morgan and Rubin, 2012).16

The remainder of this section uses our framework to clarify the potential costs and benefits

of rerandomization.

4.2 The Tradeoff of Rerandomization

The benefit of rerandomization. The benefit of rerandomization is immediately appar-

ent: it increases the subjective expected performance of the implemented design.17

Remark 1. Subjective performance Eh0 [u(p, αrct(e∗K , y))], in which the expectation is taken

given a realization for e∗K, first-order stochastically dominates Eh0 [u(p, αrct(e∗K−1, y))].

In the special case where prior h0 rationalizes minimizing the Mahalanobis distance be-

tween mean covariates, this observation coincides with the analysis of Morgan and Rubin

(2012). In that work, rerandomization leads to significantly more precise estimates of treat-

ment effects when outcomes come from a linear Gaussian model. More generally, Bugni

16The Mahalanobis distance defined by covariates x = (xi)i∈{1,...,N} (with xi ∈ Rk) between two arbitrary

vectors v1, v2 ∈ Rk is given by (v1 − v2)>cov(x)−1(v1 − v2). This is equivalent to the standard Euclidean
distance in the rotated and rescaled coordinate system in which the sample covariance matrix of covariates x
becomes the identity matrix—that is, the Euclidean distance in the basis defined by the principal components
of x.

17This holds for any preference over deterministic assignments used to select e∗K among K assignments.
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et al. (2018) show that balance from symmetric stratification procedures also substantially

increases precision.

The cost of rerandomization. Although rerandomization provides clear benefits in

terms of improving the subjective value of experiments, there are common, but vague, con-

cerns about its potential costs. As Bruhn and McKenzie (2009) document, this leads many

researchers to rerandomize, but not report the fact that they did. Our framework clarifies

the issue by showing that rerandomization can indeed reduce robustness. However this cost

grows very slowly with the number of rerandomizations.

We assume that the number of experimental assignments emaximizing Eh0 [u(p, αrct(e, y))]

is bounded above by a finite number, independently of N .18

Proposition 3. There exists ρ > 0 such that, for all N and H satisfying Assumption 1 with

parameter ξ > 0, if K ≥ 2N , then

max
α

min
h∈H

Eh,EK [u(p, α(e, y))] < min
h∈H

Eh
[

max
a∈{0,1}

u(p, a)

]
− ρξ.

Intuitively, when K is sufficiently large, the experimental assignment is essentially deter-

ministic. Proposition 2 implies that this precludes first-best performance guarantees. As a

result, Proposition 3 encourages caution towards balance-targeting rerandomization schemes

that set a fixed balance target, and rerandomize until that target is reached. If very few

assignments satisfy this target, then such rerandomization algorithms cause non-vanishing

robustness losses.

Still, the number of rerandomizations K necessary to cause non-vanishing robustness

losses is exponential in the sample size. This suggests that a moderate number of rerandom-

izations may have little impact on robustness. This is indeed the case.

18In the case where the balance objective coincides with the Mahalanobis distance, there will generically
be two optimal assignments as treatment and control status can be switched without changing balance.
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Proposition 4. Given K ≥ 2, consider K-rerandomized experiment EK. For all h ∈ ∆(P ),

Eh,EK[u(p, αrct(e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
− 2

√
lnK

N
.

Proposition 4 clarifies that additional losses from rerandomization are of order
√

lnK.19

When K = O(N), this implies that the K-rerandomized experiment still approaches the

first-best as N grows large. Still, whether this potential loss in robustness is worthwhile

depends on experimenter preferences. We propose what we believe are reasonable guidelines

for practice in Section 6, but emphasize that they are ultimately subjective.

Remarkably, Proposition 4 holds for any preference over deterministic assignments used

to select e∗K among K assignments. As we discuss in Section 6, this suggests that K-

rerandomized experiment designs could be used to trade off robustness with objectives other

than standard statistical balance, including the preferences of stakeholders.

4.3 Direct Approaches to Balance Involve Similar Tradeoffs

We conclude this section by showing that understanding K-rerandomization helps us under-

stand other, more direct, approaches to balance.

Consider the following experiment design, denoted by EE† . First, the experimenter de-

fines a set of acceptable assignments E† ⊂ E. For example, the set of assignments that are

perfectly balanced on a few discrete-valued dimensions of covariates x ∈ Rk, and tolerably

balanced on the remaining dimensions. Second, an assignment e is drawn from E† with uni-

form probability, and implemented. This overall design could be implemented by stratifying

on these few dimensions—achieving perfect balance on those dimensions—and then drawing

stratified samples until they satisfy the overall balance objective.20

19This bound is non-asymptotic and conservative.
20Stratification is also sometimes referred to as “blocking.” It usually involves dividing a sample along some

particular dimension, say gender, and then assigning treatment through draws without replacement within
each gender. In this way, the treatment and control groups will be exactly balanced on this dimension. In our
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The potential issue here is that set E† may be quite small. If this is the case, then

the experiment is near deterministic, and the argument of Proposition 3 applies: balance

constraints reduce performance guarantees by an amount that does not vanish as N gets

large. This is especially problematic if set E† is difficult to compute explicitly, so that the

decision-maker is not naturally aware of how demanding a balance target is. The bound K

in K-rerandomization mechanically ensures that the experimenter does not seek to achieve

excessively difficult balance objectives. Intuitively, if it takes many draws of random samples

to reach the acceptable set E†, then it is likely that the set E† is excessively small.

This intuition can be used to obtain a lower bound on the performance of experiment

design EE† . Let pE† denote the probability that a uniformly chosen assignment e ∈ E belongs

to E†.
21 Proposition 4 can be used to establish the following efficiency bound.

Proposition 5. For all h ∈ ∆(P ),

Eh,EE† [u(p, αrct(e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
−min

K≥2

[
2

√
lnK

N
+ (1− pE†)K

]
.

This implies that a procedure seeking to achieve a given balance objective will come at a

limited cost to robustness if an acceptable assignment can be reached with high probability

within a small number of rerandomizations.

Quantile-targeting rerandomization. This analysis helps qualify the balance-targeting

rerandomization procedure endorsed by Morgan and Rubin (2012). Proposition 5 suggests

specifying balance targets as a quantile of balance among all possible assignments. This

makes the size of set E† explicit and ensures that the balance objective picked by the ex-

perimenter does not cause significant losses in robustness. For instance, if the experimenter

framework, stratification on all dimensions is not possible, as individuals are unique. However, stratification
is possible along a few discrete-valued dimensions of covariates x ∈ Rk, for instance gender.

21Computing pE† may be difficult for complex balance criteria. In that case, Monte Carlo simulations can
be used to compute an estimate of pE† .
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targets the 95th percentile of balance, then pE† = 5% and robustness losses due to rerandom-

ization vanish as sample size N grows large.

5 Reference Dependence and Regret Aversion

The use of null-hypothesis statistical testing (NHST) is another common practice that stan-

dard models fail to predict. Recent work, however, shows that NHST can be rational-

ized if the decision-maker exhibits reference-dependence (Tetenov, 2012). We establish that

reference-dependent preferences are compatible with our framework.

The version of reference-dependence we use nests regret aversion as a special case. It has

the additional benefit of allowing us to dispense with Assumption 1. In particular, consider

payoffs

w(p, a) = ∆a
p × (1 + κa1∆a

p<0), with 0 < κ0 ≤ κ1,

where ∆a
p ≡ pa − p1−a. These payoffs depend on both the policy choice a made by the

decision-maker, and the performance difference ∆a
p between this choice and the alternative.22

Crucially, the parameters κ0, κ1—which only affect preferences when the decision-maker

makes a mistake (∆a
p < 0)—imply that the possibility of a success of size ∆a

p cannot offset

an equal possibility of a mistake of the same size.23 When κ0 = κ1, regret about a mistake

of a given magnitude is the same whether a equals 0 or 1. This is the standard formulation

of regret aversion in the statistical decision theory literature. On the other hand, when

κ0 < κ1, mistakes made when the decision-maker chooses a = 1 are given more weight than

those made when the decision-maker chooses a = 0. Thus, a = 1 will only be chosen if the

decision-maker is sufficiently certain that p1 > p0.

22Appendix C shows that these preferences rationalize NHST as an optimal decision rule.
23The decision-maker exhibits loss aversion, consistent with Prospect Theory (Kahneman and Tversky,

1979).
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We consider the variant of (DP) in which the decision-maker seeks to maximize

λEh0,E [w(p, α)] + (1− λ) min
h∈H

Eh,E [w(p, α)] (DP′)

where H = ∆ (P ) is now the set of all possible priors over states p ∈ P .24

Note that we no longer impose Assumption 1 (limited extrapolation). The set of priors

H is simply the set of all priors over P . As noted earlier, Assumption 1 is needed to rule out

the doctrinaire prior in which p1 = p0 = 0. This would be the unconstrained worst-case prior

chosen by nature under problem (DP), and no learning is possible at these priors. Nature

does not select such a prior under regret aversion. Under the worst-case prior for problem

(DP′), one policy must be better than the other. Otherwise the decision-maker cannot make

a mistake, and there is nothing to regret. As a result, under regret aversion, information is

valuable even under the unconstrained worst-case prior.

In this environment, analogs of our earlier propositions hold:

Proposition 6 (randomization). Consider a decision-maker solving Problem (DP′):

(i) Whenever λ = 1, running a deterministic experiment is weakly optimal.

(ii) For every h0 and every λ ∈ (0, 1), as N becomes arbitrarily large, determin-

istic experiments remain bounded away from efficiency, and randomized experi-

ments are strictly optimal.

Proposition 7 (rerandomization). There exists M > 0 such that for every prior h ∈ H and

K ≥ 1,

Eh,e∼EK ,a∼αrct [w(p, a)] ≥ Eh
[

max
a∈{0,1}

w(p, a)

]
−M

√
ln(K + 1)

N
.

24Alternatively, for any p < 1/2 < p, we could consider the set of priors H = ∆([p, p]2X)
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6 Discussion

The ambition of this paper is to provide a decision-theoretic framework for experimental

design that can clarify debates about experimental practice. Our primary requirement is

that any such framework should rationalize revealed preferences for randomization. In this

last section, we discuss alternative rationales for randomization and formulate suggestions

for practical experiment design.

6.1 Alternative Rationales for Randomization

An alternative rationale for randomization is that experimenters are indifferent over exper-

imental assignment, and may as well randomize. This indifference could be ascribed to a

lack of opinion over the variation in treatment effects associated with different covariates.

Alternatively, experimenters may have such opinions, but find the collection of covariate

information too costly.

We believe that this rationale is not consistent with the preferences revealed by the

behavior real-life experimenters. First, experimenters indicate strong preferences against

deterministic assignments and in favor of randomized designs, including, but not limited

to, standard RCTs. Ensuring proper randomization is often costly, and experimenters are

concerned when they engage in any behavior that strays from this gold standard. This is

especially true in economics, where experimenters often invest considerable time and energy

trying to convince implementation partners to randomize. Second, experimenters are not

indifferent about balance, and reveal mild preferences for rerandomized assignments over

standard RCTs. Indeed, experimenters do obtain covariates, and frequently use them to

determine experimental assignment by rerandomizing or stratifying. Concerns over balance

typically vanish as the sample size grows large. Our model captures all these facts: deter-

ministic assignments are unattractive even when the sample size is large; standard RCTs are

a sizeable improvement, although they may be improved by enhancing balance; the value of
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this last improvement vanishes as N gets large.

Another potential avenue to rationalize randomization is to view it as a delegation rule

in a principal-agent setting: the audience wants data to be collected, but wants to limit the

ways in which an interested experimenter could bias findings. This concern about moral

hazard is not present in our framework: we believe that experimenters and their audience

find randomization valuable even in the absence of incentive issues. In other words, we

believe that a team of researchers and policy designers sharing the same objectives, but not

necessarily the same beliefs, would find randomization a valuable tool. While we certainly

believe that some experimenters are interested in obtaining specific outcomes—for example,

pharmaceutical companies—it is still difficult to explain randomization without introducing

heterogeneous priors. A Bayesian regulator would prefer mandating specific experimental

assignments, for example, assignments maximizing balance.

6.2 Deterministic versus Randomized Experimentation

As shown in Section 3, our framework predicts either deterministic experimentation or ran-

domized experimentation depending on the sample size N and the weight the decision-maker

places on satisfying her audience λ. Here we describe how these findings relate to stylized

facts about experimentation, as summarized in Figure 1. Throughout, we maintain Assump-

tion 1 for a fixed parameter ξ > 0 (alternatively, we could assume the reference-dependent

preferences of Section 5). Under this maintained assumption, changes in sample size N are

accompanied with changes in the set of type X and priors H.

When sample points are scarce (N is small), or when the decision-maker does not put

much weight on satisfying her audience (λ is close to 1), the optimal experiment is determin-

istic, driven by prior h0. The experimenter assigns treatment and control to maximize the

decision-making value of the data collected. For example, in the context of process improve-

ment, a firm testing out new machinery may assign treatment to its best performing teams
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Figure 1: When to randomize? Theory matches broad patterns.

N

1− λ

λ

Randomize

Development Economics

Drug Approval

Online Marketing

Do Not

Randomize
Early-Stage Medical Research

Process Improvement
in Firms

so that the evaluation is not muddled by operational errors. When refining a new product,

firms test their prototypes with selected alpha users.

Similarly, early-stage medical research often does not feature randomization. This occurs

in Phase I trials, which examine the toxicity of a new compound. These trials recruit

healthy volunteers, which allows adverse reactions to be cleanly ascribed to treatment rather

than to any underlying disease condition. Sample sizes in Phase I trials also tend to be

relatively small. Deterministic experimentation also occurs when studying patients who have

conditions known to rapidly result in severe disability or death.25 Any improvement can be

reliably assigned to the treatment. In our framework, the reasoning underlying these two

cases is the same: relatively little disagreement between the experimenter and the adversarial

audience leads to deterministic designs maximizing the experimenter’s subjective expected

utility.

When the decision-maker cares sufficiently about satisfying her adversarial audience, or

when she has a sufficiently large sample, she will randomize. The former is the case in

25For recent examples, see Harmon (2016) and Yuhas (2016).
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scientific research, especially when the experiment has significant policy implications—for

example, in development economics. The latter is the case for firms doing A/B testing

online. Although the firm only needs to convince itself of the effectiveness of a particular ad,

there are so many observations available that randomization is used to effectively address

internal concerns about robustness. This is also the case for later-stage medical research

seeking regulatory approval: government regulators, doctors, patients, and investors form

the adversarial audience for pharmaceutical and medical device companies.

6.3 The Practice of Rerandomization

We now discuss how our results may be used to inform the practice of rerandomization. We

emphasize that our results apply to environments where the set of covariates is known at

the time of treatment assignment. We extend our results to the case of sequential treatment

assignment in Appendix A.

Proposition 2 and Corollary 1 establish that: 1) randomization is a key aspect of any

compromise between subjective expected utility and robust payoff guarantees; and 2) the

standard RCT is an acceptable compromise, providing approximately optimal performance

for each objective. We interpret Propositions 3 and 4 as expanding the range of such compro-

mises. We emphasize two insights from our analysis that seem most useful for practice: first,

how to set balance targets so that they do not inadvertently cause severe losses in robustness,

and second, how to use rerandomization to allow stakeholders to express preferences.

Setting balance targets properly. Our analysis identifies the following issue with the

practice of rerandomization: excessively ambitious absolute balance objectives may lead to

severe losses in robustness. Propositions 4 and 5 suggest two ways to address the issue by

changing the metric used to set balance targets.

The first approach is to use K-rerandomization, with K less than sample size N . This

ensures losses on the order of
√

ln(N)
N

. A rule of thumb that strikes us as a (subjectively)
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attractive compromise is to set K ≤ min{100, N} (Banerjee et al., 2017). Indeed, note that

with probability 1 − 0.95K the K-rerandomized assignment is in the 95th quantile of most

balanced assignments. For any K ≥ 100 this event has probability greater than 99%.

The second approach, described in Section 4.3, is to set a quantile of balance as an objec-

tive, for instance the 95th quantile of balance among all assignments e ∈ E, and rerandomize

until that target is achieved. For any such fixed quantile, Proposition 5 ensures that losses

against the first-best vanish as sample size N grows large. Concretely, an approximate way

to generate such an assignment would be to draw a large set of independent, exchangeable

assignments, and choose one with uniform probability among the 5% most balanced.

In both cases, the idea is to avoid setting absolute balance goals, so that rerandomization

does not inadvertently lead to an extremely reduced set of possible assignments. Expressing

rerandomization objectives using either a bound on the number of rerandomizations, or by

setting a quantile of balance, clarifies how “selected” possible assignments are. While the

optimal degree of rerandomization is ultimately subjective, we think these guidelines—setting

K = min{N, 100} or targeting the 95th quantile of balance—offer a reasonable compromise

between subjective performance and robust performance guarantees.

Expressing stakeholder preferences. As noted in the text surrounding Remark 1 and

Proposition 4, these results do not rely on the fact that selected experimental assignment e∗K

maximizes a specific subjective performance objective. They hold regardless of the way the

final assignment e∗K is selected, provided it is selected among K uniformly-drawn random

assignments.

This means that one can use a K-rerandomized design as a way to let stakeholders

and implementation partners express preferences, albeit in a constrained way. Regulators,

funders, or the communities from which experimental participants are drawn often have

equity concerns and distributional preferences. They may care about targeting treatment to

those they believe will benefit the most, or may simply dislike the lack of control inherent
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to randomization and wish to exert some control over assignment. The ability to at least

partially accommodate the preferences of stakeholders, by using their preferences to select

an assignment among K options, may help build goodwill and ensure cooperation.

Concretely, such a protocol would take the following form: (i) let stakeholders express

preferences over assignments; (ii) draw K random assignments; (iii) pick the assignment e∗K

from that group of K randomizations that maximizes the preferences of stakeholders; (iv)

run the experiment ; (v) take policy decision a = 1y1≥y0 .

We note that in this description, the preferences of stakeholders are expressed ex ante,

although Proposition 4 would continues to hold even if stakeholders picked the assignment ex

post without pre-specifying their preferences. Stating preferences ex ante has two benefits.

First, formally specifying the preferences of stakeholders permits randomization inference

tests (Fisher, 1935; Morgan and Rubin, 2012; Young, 2016). That is, given the process for

assignment, a statistician can simulate the distribution of treatment effects that would be

observed if p1
x = p0

x, for all x ∈ X. This procedure can be used to calculate exact p-values,

and infer standard errors. Second, randomization helps parties with differing priors agree on

a process ex ante, but not ex post: if audience members start looking into the details of the

realized assignment, someone may well find issue with it.

6.4 Future Directions

We believe that debates over the proper way to do empirical research are an opportunity to

both improve, and put to gainful use, economists’ models of decision-making. Other possible

uses of our framework include understanding subgroup analysis and multiple-hypothesis

testing. We believe these factors can be introduced in our framework by considering more

complex policies that tailor treatment to the covariates of participants. Pre-analysis plans—

that is, the practice of pre-specifying which statistics of the data will be reported—also form

a challenge to traditional models of experimentation. This practice is difficult to rationalize
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using a Bayesian framework as long as all collected data is made available. A related,

but more fundamental, difficulty is explaining the reliance on low-dimensional statistics,

rather than just publishing data. We believe that models of rational inattention provide an

attractive path forward.

Appendix

A Sequential Treatment Assignment

In many settings, subjects arrive over time and treatment assignment has to be made se-

quentially. This is particularly true in settings where recruitment takes time (for example,

medical trials), or in settings where the cost of interacting with subjects is large (for ex-

ample, economic development experiments occurring in hard to reach rural areas). In such

settings, it may not be practical to first learn the set of covariates X in the full sample and

assign treatments afterwards. In this appendix we show that much of our analysis holds in

such environments. We propose a variant of K-rerandomization appropriate for sequential

assignment.

Sequential treatment assignment has received attention from statisticians. For example,

Efron (1971) advocates biased coin designs to ensure that treatment and control are sam-

pled at similar rates, without generating significant bias in treatment assignment. More

recently, Atkinson (1982, 2002) extends the approach to the design of sequentially balanced

experiments when participants have covariates. Guiteras et al. (2016) provides simulations

and details from field implementations highlighting the value of such designs in practice.

To our knowledge, this literature does not address the impact of such designs on robust

decision-making.
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Framework. N experimental participants are labeled by their arrival period i. Each

participant i ∈ {1, · · · , N} exhibits an observable covariate di ∈ D, where D is finite.

We denote by xi = (i, di) covariates augmented with the time of arrival of participants. In

principle, outcomes yi ∈ {0, 1} may depend on the time of arrival. Let X = {xi}i∈{1,··· ,N}
denote the final set of covariates. Note that X is a random variable. We denote by X =

supp X the set of potential sets of covariates X. A state of the world is a pair (X, p), where

p takes the form (pτx)τ∈{0,1}, x∈X . A prior h now denotes a prior over the pair (X, p). As in

Section 2, the payoff of a decision-maker taking decision a at state (X, p) is u(X, p, a) =

1
|X|
∑

x∈X p
a
x.

We continue to denote by τi ∈ {0, 1} the treatment assignment of the ith participant.

A design history sn in period n ≤ N is a tuple (xi, τi, xn)i∈{1,··· ,n−1}. An experimental

assignment function e ∈ E is a mapping from design histories sn to treatment assignments

τn ∈ {0, 1}. A randomized experiment E is a distribution over experimental designs e ∈ E.

The final realized experimental assignment is described by history sN+1 = (xi, τi)i∈{1,··· ,N}.

A policy rule α is a mapping from the final experiment design sN+1 and realized outcome

data y = (y1, · · · , yN) to policy choices ∆({0, 1}). The decision-maker evaluates choices over

experiment designs E and policy rules α according to criterion

λEh0,E,α[u(X, p, a)] + (1− λ) min
h∈H

Eh,E,α[u(X, p, a)], (DP†)

where h0 is a prior over (X, p), and H is a set of priors h over (X, p). For simplicity, we

assume that H takes the form H = {δX × hp |X ∈ X , hp ∈ Hp}, where δX is the Dirac mass

at X, and Hp ⊂ ∆
(
[0, 1]2N

)
is a set of priors over p satisfying Assumption 1 for some fixed

ξ > 0.

The benchmark sequential RCT design Esrct takes the following form:

• For each history sn, Esrct assigns treatment τ = 1 with probability 0.5.

• Policy a is chosen according to the empirical success rule: αrct(e, y) ≡ 1y1≥y0 defined
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in Section 2.

Benchmark results. The following results hold:

(i) If λ = 1, there exists a deterministic experiment design e that maximizes objec-

tive (DP†).

The decision-maker’s value at any history sn satisfies the Bellman equation

V (sn) = max
τ∈{0,1}

Eh0V (sn+1)

with V (sN+1) = Eh0,sN+1

[
max
a∈{0,1}

Eh0 [u(X, p, a)|sN+1, y]

]

At any history sn the decision-maker picks τn solving the first equation above. As

she is an expected utility maximizer, there is no advantage to random treatment

choice. A deterministic contingent plan is optimal.

(ii) If λ > 0 and Assumption 1 holds for ξ > 0 fixed, then any deterministic experi-

ment is bounded away from the first-best by a term greater than (1− λ)ξ.

The result follows from the fact deterministic sequential experiment designs form

a subset of the deterministic experiment designs studied in Section 2. As a result,

payoffs under deterministic sequential experiment designs are bounded above by

payoffs under deterministic experiments.

(iii) Sequential trial design Esrct yields payoffs within O
(√

1
N

)
of first-best. The

proof is identical to that of Corollary 1.

Sequential K-rerandomization. It is possible to provide a sequential version of the K-

rerandomization process described Section 4. The design, denoted by EsK , takes as given

a value function W defined over states sn and period n assignments τn. We provide a few

possibilities below. Assignments are defined as follows:
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1. Draw K sequential assignment mappings (e1, · · · , eK) ∈ E × · · · × E according to K

sequential RCT designs (E1
srct, · · · , EKsrct). Note that each individual design Eksrct as-

signs treatment independently across covariates, but the realizations of the assignment

mappings themselves may be correlated across values k ∈ {1, · · · , K}. We provide

examples below (in particular, see Figure A.1).

2. For each history sn, we define the set of feasible treatments T (sn) at sn as

T (sn) = {e(xn)|e ∈ {e1, · · · , eK} s.t. ∀n′ < n, e(xn′) = τn′}.

T (sn) is the set of assignments e1(xn), · · · , eK(xn), for mappings ek whose assignments

for past covariates xn′ are consistent with realized past assignments τ ′n (with n′ < n).

Treatment τn is chosen from argmaxτ∈T (sn) W (sn, τ). Indifferences are resolved with a

uniform draw.

3. Policy rule α is the empirical success rule αrct ≡ 1y1≥y0 .

The proof of Proposition 4 implies that this experiment design guarantees payoffs close to

the first-best, up to losses of order
√

lnK
N

. Indeed, the proof of Proposition 4 only relies on

the fact that each assignment Eksrct for k ∈ {1, · · · , K} provides robust payoff guarantees.

Proposition 4 holds regardless of the correlation between assignment mappings.

There are several ways to define value function W . Given a prior µ0 over X, and a balance

function over final assignments B(sN+1), one can define W via the Bellman equation

V (sN+1) = B(sN+1)

V (sn) = max
τn∈T (sn)

Eµ0 [V (sn+1)|sn, τn]

W (sn, τn) = Eµ0 [V (sn+1)|sn, τn]

In practice, it may be convenient to use the sample empirical prior estimated over past
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covariates to predict future covariates at each history. Concretely, for any n, µ̂n is the

belief over future covariates ((n + 1, dn+1), · · · , (N, dN)) obtained by resampling covariates

(d1, · · · , dn) with replacement. At every n we define Vn by

Vn(sN+1) = B(sN+1)

∀n′ ≥ n, Vn(sn′) = max
τn′∈T (sn′ )

Eµ̂n [Vn(sn′+1)|sn′ , τn′ ]

and define W (sn, τ) = Eµ̂n [Vn(sn+1)|sn, τ ].

The reason that one may want to correlate assignments e1, · · · , eK is to optimally delay

selecting the ultimate assignment. For instance, if K = 2, it may be beneficial to draw

two assignments e1 and e2 that are identical up to participant N/2, and independent after

participant N/2. That is, for all d ∈ D, e1((i, d)) = e2((i, d)) if i ≤ N/2, and e1((i, d)) inde-

pendent of e2((i, d)) if i > N/2. This allows the experimenter to first learn the distribution

of covariates z in the population before picking the continuation assignment that maximizes

expected balance.

Figure A.1: Correlated assignments

More generally, if the number of randomizations is K = CG, with C and G two integers,

one could select the final assignment e in G steps, with choices made at times n1, · · · , nG.

At each period ng, the decision-maker chooses between C independently drawn assignment

mappings for covariate realized between time ng and ng+1 − 1. In that case, action set

T (sn) is a singleton for all periods n /∈ {n1, · · · , nG}. Figure A.1 illustrates such correlated

assignments in a setting with K = 4, G = 2, C = 2, n1 = N/4, and n2 = N/2.
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Online Appendix—Not Intended for Publication

B Balance as Subjective Expected Utility

In this appendix we clarify that under an appropriate prior, maximizing subjective perfor-

mance coincides with a traditional balance objective: minimizing the Malahanobis distance—

defined by sample covariates (xi)i∈{1,...,N} with xi ∈ Rk—between mean covariates across the

treated and control groups (Rubin, 1980; Cochrane and Rubin, 1973; Rubin, 1979; Morgan

and Rubin, 2012). To simplify the analysis, we allow for Gaussian priors, although they do

not satisfy the framework of Section 2.1

Prior h0 is generated as follow. Assume the decision-maker believes outcomes yτi are

distributed according to the linear model

yτi = τi∆ + bᵀzi + εi with ∆ ∼ F∆ , b ∼ N (0, Ik)

in which zs are the underlying determinants of outcomes ys, Ik is the k-dimensional identity

matrix, and (εi)i∈{1,...,N} are independent, mean-zero error terms. Although terms zi are

unobservable, they are assumed to be a linear transformation of observables xi, so that

xi = Mzi, with M invertible. This implies that

yτi = τi∆ + βᵀxi + εi , with β ∼ N (0, cov(x)−1).

Given a treatment assignment (τi)i∈{1,...,N}, let xτ ≡ 2
N

∑N
i=1 xi1τi=τ ∈ Rk and φ ≡ 2

N

∑N
i=1(−1)1−τiεi.

We make the (asymptotically correct) assumption that φ is normally distributed with vari-

ance σ2
φ. Under the empirical success rule, the subjective expected utility of the decision-

1Our analysis extends to such environments provided the mean and variance of possible outcome distri-
butions are bounded.
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maker under prior h0 is

Eβᵀx0 + E∆[∆× Prob(∆ + βᵀ(x1 − x0) + φ ≥ 0)].

This expression is decreasing in the variance of βᵀ(x1 − x0):

var(βᵀ(x1 − x0)) = (x1 − x0)>cov(x)−1(x1 − x0),

which is precisely the Mahalanobis distance between the mean of covariates in the treatment

and control groups. Under this prior, the assignment (τi)i∈{1,...N} that maximizes subjective

expected utility minimizes the Mahalanobis distance between covariate means across the

treatment and control groups.

C Null-Hypothesis Statistical Testing

Decision problem (DP) does not rationalize null-hypothesis statistical testing (NHST, using

t- or z-statistics favoring implementation of the null treatment a = 0), a mainstay of exper-

imental practice. In that decision problem, the raw treatment effect—that is, the difference

in average outcomes—is sufficient for near-optimal decision-making. This appendix clari-

fies that other standard preferences (including risk aversion over treatment effects) do not

rationalize NHST, while the reference-dependent preferences introduced in Section 5 do.

Ambiguity aversion does not play a role in this argument, so we consider a decision-

maker with independent Gaussian posteriors N (p̂a, σ
2
a

N
) over the mean outcomes pa of actions

a ∈ {0, 1}.2 A risk-neutral Bayesian decision-maker solving maxa∈{0,1} E[pa], expectations

being taken under the posterior N (p̂a, σ
2
a

N
), will take action a = 1 if and only if p̂1 − p̂0 > 0.

2Parameters p̂a and σ2
a/N could be derived from a standard Gaussian learning model with diffuse priors.

Under such a model p̂a would be equal to the sample average of outcomes y following treatment τ = a.

Online Appendix–2



However, the t-statistic for a given treatment effect p̂1 − p̂0 is given by

t ≡
√
N

p̂1 − p̂0√
σ2

0 + σ2
1

.

Thus, decision rules that choose a = 1 if and only if t > t > 0 (where t is a fixed-threshold)

are suboptimal. Indeed, since t > 0, for any given estimated treatment effect p̂1 − p̂0, there

always exists σ0 large enough such that t < t. As a result the decision-maker sticks with

a = 0 regardless of the estimated treatment effect.

Risk aversion over policy outcomes. A natural hypothesis is that risk aversion may

drive the reliance on hypothesis testing using t-statistics. However, this is not the case. To

show this, we assume (w.l.o.g.) that σ0 < σ1, and consider a decision-maker who wants to

solve maxa∈{0,1} E [Γ(pa)] where Γ is quadratic and concave. As E [Γ(pa)] = Γ(p̂a) + 1
2
Γ
′′ σ2

a

N
it

follows that

E
[
Γ(p1)

]
≥ E

[
Γ(p0)

]
⇐⇒ 2N

−Γ′′
Γ(p̂1)− Γ(p̂0)

σ2
1 − σ2

0

= γ
p̂1 − p̂0

σ2
1 − σ2

0

> 1

with γ = 2NΓ′(p̃)
−Γ′′

for some value p̃ ∈ [p̂0, p̂1].

This differs significantly from a t-statistic: mean treatment effect p̂1 − p̂0 is scaled by

the difference of variances, rather than the sum of standard deviations. In particular, risk

aversion means that the decision-maker values certainty (a small variance in outcomes) as

well as a higher mean outcome. Greater standard deviation σ0 makes action a = 0 less

attractive, not more.

Reference-dependent preferences. The asymmetric treatment of the null and alterna-

tive hypotheses suggests that one must resort to reference-dependent preferences to motivate

NHST using t-statistics (see Tetenov, 2012). As in Section 5, consider a decision-maker who
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seeks to solve

max
a∈{0,1}

E[w(p, a)], (C.1)

where w(p, a) ≡ ∆a
p × (1 + κa1∆a

p<0) with ∆a
p ≡ pa − p1−a and 0 < κ0 ≤ κ1.

Lemma C.1. Consider a reference-dependent agent solving (C.1), with κ0 < κ1. The

optimal-decision rule takes the form t > t∗, with t∗ > 0.

Proof of Lemma C.1: Let t ≡
√
N p1−p0√

σ2
0+σ2

1

. As p1−p0 ∼ N
(
p̂1 − p̂0,

σ2
0+σ2

1

N

)
, it follows that

conditional on observing a t-statistic t, t ∼ N (t, 1). Note that w is positively homogeneous

of degree 1. Conditional on realized data, the decision-maker chooses a = 1 if and only if:

E
[
w(∆1

p, 1)− w(∆0
p, 0)

]
> 0 ⇐⇒ Et

[
w

(
t

√
σ2

0 + σ2
1

N
, 1

)
− w

(
−t
√
σ2

0 + σ2
1

N
, 0

)∣∣∣∣∣ t
]
> 0

⇐⇒ Et
[
w
(
t, 1
)
− w

(
−t, 0

)∣∣ t] > 0

⇒ t > t∗

for some value of t∗. Note that w
(
t, 1
)
− w

(
−t, 0

)
= (2 + κ0)t + (κ1 − κ0)t1t<0. As

κ0 < κ1 it follows that w
(
t, 1
)
− w

(
−t, 0

)
is increasing and concave in t, and strictly

so around 0. As t has expectation equal to zero conditional on t = 0, this implies that

Et
[
w
(
t, 1
)
− w

(
−t, 0

)∣∣ t = 0
]
< w(0, 1)− w(0, 0) = 0, so that t∗ > 0. �

D Proofs

Proof of Proposition 1: We begin by showing that deterministic experiments are always

weakly optimal for a Bayesian decision-maker. The decision-maker’s indirect utility from
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running experiment E can be written as

max
α∈A

Eh0,E [u(p, α(e, y))] =
∑
e∈E

E(e)v(h0, e),

where v(h0, e) is the indirect utility from decision-making given realized experiment e:

v(h0, e) ≡
∑
y∈Y

Probh0,e(y) max
a∈{0,1}

Eh0,e [u(p, a)|y] . (D.1)

Any deterministic experiment e∗ solving maxe∈E v(h0, e) is optimal. More strongly, E solves

(DP) if and only if supp E ⊂ argmax
e∈E

v(h0, e).

We now prove that deterministic experiments are generically strictly optimal when all

data-points are valuable. We first consider the case where λ = 1. It is straightforward to

show that the set of priors for which there exists a uniquely optimal deterministic experiment

is open. Suppose e is uniquely optimal under h0. As E is finite, there exists η > 0 such that

v(h0, e) > v(h0, e
′) + η for all e′ 6= e. As v is continuous in h0, there exists a neighborhood

N0 of h0 such that v(h, e) > v(h, e′) + η/2 for all h ∈ N0 and e′ 6= e. Hence, the set of priors

for which there exists a uniquely optimal deterministic experiment is open.

We now show that the set of priors for which there exists a uniquely optimal experiment is

dense in the space of priors for which all data points are valuable. The proof is by induction

on the number of optimal experiments in argmaxe∈E v(h0, e). Fix a neighborhood N0 of h0

such that all data-points are valuable under priors h ∈ N0. We show that, if there are n

such optimal experiments, then there exists a prior h ∈ N0 such that there are at most n−1

optimal experiments in argmaxe∈E v(h, e). The proof consists of two main steps. First, we

establish that the following simplifying assumptions are without loss of generality:

• we can pick N0 such that argmaxe∈E v(h, e) ⊂ argmaxe∈E v(h0, e) for all priors h ∈ N0;
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• we can assume that for any experiment e, a fixed policy rule α(y, e) is uniquely optimal
for all priors h ∈ N0.

Second, given two experiments e, e′ that are optimal at prior h0, we exploit the fact that

one pair (x, τ) must be sampled by e and not by e′ to construct a family of priors in N0 that

garble the information provided by pair (x, τ). Such priors change the value of experiment

e, but not the value of experiment e′, establishing the induction step.

Step 1: simplifications. The fact that we can pick N0 such that argmaxe∈E v(h, e) ⊂

argmaxe∈E v(h0, e) for all priors h ∈ N0 follows from the fact that E is finite, and v(h, e) is

continuous in h under the statistical distance.

The decision-maker’s indirect utility from running experiment e can be rewritten as

v(h0, e) = Eh0
[
p0 + α∗h0(e, y)(p1 − p0)

∣∣e] ,
where α∗h0 ∈ A denotes an optimal policy rule under h0. Suppose e 6= e′ are both optimal

under h0. As Y is finite, by breaking indifferences in favor of one policy (say a = 1),

one can find h1 ∈ N0 and a neighborhood N1 ⊂ N0 of h1 such that for all h ∈ N1 the

optimal policies α∗h(e, y) and α∗h(e
′, y) are unique and respectively equal to α∗h1(e, y) and

α∗h1(e
′, y). Furthermore, h1 and N1 can be chosen so that, for all h ∈ N1, argmaxẽ∈E v(h, ẽ) ⊂

argmaxẽ∈E v(h0, ẽ), and all data-points are valuable. If e or e′ is not optimal under h1, this

concludes the inductive step.

Step 2: targeted garbling. Consider the case where e and e′ are optimal under h1. The

fact that e′ 6= e implies that there exists a pair (x, τ) that is sampled by e but not by e′. For

θ ∈ [0, 1] and any state p ∈ P , let f θ(p) ∈ P denote the state of the world such that

f θ(p)τx = (1− θ)pτx + θEh1 [pτx|(pτ
′

x′)(x′,τ ′) 6=(x,τ)]

and f θ(p)τ
′

x′ = pτ
′

x′ for (x′, τ ′) 6= (x, τ). Let hθ1 be the distribution of transformed state f θ(p)
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under h1. As θ approaches 0, hθ1 approaches h1 under the statistical distance. Notice that

hθ1 garbles h1 at (x, τ) alone, and does not change the expected performance of decision

rules that depend on assignments (x′, τ ′) 6= (x, τ). Hence, it does not affect the value of

experiment e′. We now show it must change the value of experiment e.

Let vθ(e) ≡ Ehθ1
[
p0 + α∗h1(e, y)(p1 − p0)

∣∣e] denote the value of experiment e for the fixed

policy rule α∗h1 , evaluated at prior hθ1. For θ close to 0, the fact that the optimal policy does

not change for priors in N1 implies that vθ(e) = v(hθ1, e). Note that vθ(e) is a polynomial in

θ. We show it is not constant. As e is optimal and all data points are valuable under h1,

sampling the pair (x, τ) is strictly valuable. Hence, there exists θ close enough to 1 such that

vθ(e) < v0(e). As a non-zero polynomial has finitely many zeros, there exists θ arbitrarily

close to 0 such that v(hθ1, e) 6= v(h1, e) = v(h1, e
′) = v(hθ1, e

′). This proves the induction step.

Finally, to conclude the proof of Proposition 1, we need to show that if a unique exper-

iment is optimal at h0 for λ = 1, then it is also uniquely optimal for λ below but close to

1. The result follows immediately from the continuity of objective (DP) in λ, and the fact

that there are finitely many experiments. Any experiment that is strictly optimal for λ = 1

remains strictly optimal for λ close to 1. �

Proof of Proposition 2: To establish point (i) and Corollary 1, we use the standard RCT

(Erct, αrct). Losses L(p) from first-best, given state of the world p, are defined as

L(p) ≡ max
a∈{0,1}

pa − p0 − (p1 − p0)× Probp,Erct(y
1 − y0 > 0).

We show that for all p ∈ P , L(p) ≤
√

1
N

. By symmetry, it suffices to treat the case where

p1 − p0 > 0. In this case, we have L(p) = (p1 − p0) × Probp,Erct(y
1 − y0 ≤ 0). We bound

the probability of choosing the suboptimal policy using Hoeffding’s inequality (Hoeffding,
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1963). A small difficulty is that assignment e = (τi)i∈{1,...,N} is exchangeable but not i.i.d.

as, by construction,
∑N

i=1 τi = N/2. For this reason we decompose the draw of exchangeable

assignment e as: (1) a uniform draw of a pairingQ = {{i, j}}, such that for all i in {1, . . . , N},

there exists a unique pair {l,m} ∈ Q such that i ∈ {l,m}; (2) independently across each

pair {i, j} ∈ Q, draw an assignment (τi, τj) ∈ {(0, 1), (1, 0)}, with equal probabilities. Given

a pairing Q, we have that

y1 − y0 =
2

N

∑
{i,j}∈Q

τi(y
1
i − y0

j ) + (1− τi)(y1
j − y0

i ).

Conditional on a pairing Q, variables τi(y
1
i − y0

j ) + (1− τi)(y1
j − y0

i ) are independent across

pairs and take values within [−1, 1]. Applying Hoeffding’s inequality to this sum of N/2

independent terms, we obtain that

Probp,Erct(y
1 − y0 ≤ 0) = Probp,Erct

(
y0 − y1 − (p0 − p1) ≥ (p1 − p0)

)
≤ exp

(
−1

4
N(p1 − p0)2

)
.

For any a > 0, the mapping x 7→ x exp(−ax2) is log-concave and maximized at x = (2a)−1/2.

This implies that

L(p) ≤
√

2 exp(−1)

N
≤
√

1

N
.

An analogous argument holds in the case where p1 − p0 ≤ 0. Hence, given any h ∈ ∆(P ),

Eh
[

max
a∈{0,1}

u(p, a)

]
− Eh,Erct [u(p, αrct(e, y))] ≤

√
1

N
.

To establish point (ii), fix a deterministic experiment e ∈ E. By Assumption 1,

max
α

min
h∈H

Eh,e [u(p, α(e, y))] ≤ min
h∈H

Eh,e
[

max
a∈{0,1}

Eh,e [u(p, a)|(pτx)x,τ∈e]
]
≤ min

h∈H
Eh
[

max
a∈{0,1}

u(p, a)

]
− ξ
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where the first inequality follows from the fact that experimental outcomes are a garbling

of (pτx)x,τ∈e — i.e. given (pτx)x,τ∈e the decision-maker can simulate the outcome y of an

experiment simply by drawing outcomes yτx independently according to pτx (see Blackwell,

1951, for a general treatment). This implies that for all α ∈ A,

min
h∈H0

Eh [u(p, α)] ≤ min
h∈H0

Eh
[

max
a∈{0,1}

u(p, a)

]
− (1− λ)ξ.

�

Proof of Proposition 3: Consider the set of optimal experiments

E∗ = argmax
e∈E

Eh0 [u(p, αrct(e, y))].

By assumption its cardinal is bounded above independently ofN . The number of experiments

that assign treatment to N/2 participants out of N is necessarily less than 2N . Hence the

probability that a K-rerandomized trial selects e ∈ E∗ is at least ρ ≡ 1−
(
1− 2−N

)K
. For

K ≥ 2N ,

ρ ≥ 1− exp
(
2N ln

(
1− 2−N

)) N→∞−−−→ 1− exp(−1) > 0.

A sequence of strictly positive terms converging to a strictly positive number is bounded

below by a strictly positive number. Hence, there exists ρ′ > 0 such that, for all N , reran-

domized experiment EK selects an experiment e ∈ E∗ with probability at least ρ′.

For all policy rules α ∈ A, h ∈ H we have that

Eh,EK [u(p, α(e, y))] ≤ (1− ρ′)Eh( max
a∈{0,1}

u(p, a)) +
∑
e∈E∗

ρ′

|E∗|Eh
(

max
a∈{0,1}

Eh(u(p, a)|(pτx)τ,x∈e)
)
.
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By Assumption 1, this implies that for all α ∈ A

min
h∈H

Eh,EK [u(p, α(e, y))] ≤ min
h∈H

Eh
[

max
a∈{0,1}

u(p, a)

]
− ρ′

|E∗|ξ,

which implies Proposition 3. �

Proof of Proposition 4: The proof that follows applies for any procedure used to pick

experiment e∗K among (e1, · · · , eK).

Denote by (y0,k, y1,k) the sample average of outcomes by treatment group for experiment

ek, and by (y∗0, y
∗
1) the sample average of outcomes by treatment group for the experimental

design e∗K selected by rerandomized experiment EK . In the case where p1−p0 > 0, regardless

of the manner in which e∗K is selected from experimental assignments {ek, k ∈ {1, . . . , K}},

losses L(p) from first-best satisfy

L(p) = (p1 − p0)Probp,EK (y∗1 − y∗0 ≤ 0)

≤ (p1 − p0)Probp,EK

(
min

k∈{1,...,K}
y1,k − y0,k ≤ 0

)
≤ (p1 − p0) min

{
1,

K∑
k=1

Probp,ek(y1,k − y0,k ≤ 0)

}
.

The proof of Proposition 2 shows that Probp,ek(y1,k− y0,k ≤ 0) ≤ exp (−N(p1 − p0)2/4). We

have that K exp(−N(p1 − p0)2/4) ≤ 1 ⇐⇒ p1 − p0 ≥ 2
√

lnK
N

, which implies that

L(p) ≤

 p1 − p0 if p1 − p0 < 2
√

lnK
N
,

K(p1 − p0) exp(−N(p1 − p0)2/4) if p1 − p0 ≥ 2
√

lnK
N
.

(D.2)

The mapping x 7→ x exp(−Nx2/4) is maximized at x =
√

2
N

. As K ≥ 2, we have

2
√

lnK
N

>
√

2
N

, which implies that both terms on the right-hand side of (D.2) are maxi-
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mized at p1− p0 = 2
√

lnK
N
. This implies that L(p) ≤ 2

√
lnK
N

. An identical reasoning applies

in the case where p1 − p0 < 0. �

Proof of Proposition 5: Consider the generalized K-rerandomized experiment EK such

that the selected experiment e∗K is chosen to maximize objective function B(e) ≡ 1e∈E† .

Proposition 4 applies as is.

Experiment design EK is equivalent to running experiment EE† (that is, picking uniformly

from E†) with probability 1− (1− pE†)K and experiment EE\E† with probability (1− pE†)K .

As u takes values in [0, 1] this implies that for all h, and K ≥ 2,

Eh,EK [u(p, αrct(e, y))] ≤
(
1− (1− pE†)K

)
Eh,EE† [u(p, αrct(e, y))] + (1− pE†)K

⇒Eh,EE† [u(p, αrct(e, y))] ≥ Eh
[

max
a∈{0,1}

u(p, a)

]
− 2

√
lnK

N
− (1− pE†)K ,

where the last inequality uses Proposition 4. Taking the maximum of the right-hand side

over K ≥ 2 concludes the proof. �

Proof of Proposition 6: Point (i) follows from a reasoning similar to that of Proposition

1. For λ = 1, given an experiment E , the decision-maker’s indirect utility is

max
α,E

Eh0 [w(p, α)] =
∑
e∈E

E(e)W (h0, e),

where W (h0, e) ≡
∑

y∈Y Prob(y|e) maxa∈{0,1} Ep∼h0 [w(p, a)|e, y] . Hence, an experiment E is

optimal if and only if supp E ⊂ arg maxe∈EW (h0, e).

We now turn to point (ii). We use Proposition 7—established below—which implies that

there exist randomized experiments leading to optimal decisions up to a penalty of order

O(1/
√
N). This implies that the decision-maker can guarantee herself a payoff greater than
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−O(1/
√
N). We show this is not true when the decision-maker implements a deterministic

experiment e. For d ∈ (−1/2, 1/2), let p(d) denote the state such that

p0
x = 1

2
+ d, p1

x = 1
2

if τx = 1;

p0
x = 1

2
, p1

x = 1
2
− d if τx = 0.

Consider the prior he that puts probability 0.5 on p(d = ν) and 0.5 on p(d = −ν) for

ν ∈ (0, 1/2). By construction the information generated by experiment e is independent

of whether d = ν or d = −ν. In addition, ∆1
p = p1 − p0 = −d. Hence, under prior he,

regardless of the action a taken by the decision-maker, there is probability 0.5 that ∆a
p = −ν

and probability 0.5 that ∆a
p = +ν. As w(p, a) is locally strictly concave in ∆a

p around

∆a
p = 0, it follows that expected payoff from running experiment e under he is bounded be-

low 0. This implies that for N large enough, randomized experiments are strictly optimal. �

Proof of Proposition 7: The proof is closely related to that of Proposition 4. Consider

first the case where ∆1
p ≡ p1 − p0 > 0 so that the first-best action is a = 1. Given p, the

efficiency loss compared to first-best is equal to L(p) = Eh,EK [w(∆1
p, 1)− w(∆αrct

p , αrct)].

As ∆1
p > 0, we have that L(p) = (2 + κ0)Probh,EK (αrct = 0)∆1

p. The proofs of Proposi-

tions 2 and 4 imply that Probh,EK (αrct = 0)∆1
p is bounded above by 2

√
ln(K+1)

N
. An identical

argument holds in the case of ∆1 < 0, which yields Proposition 7. �

E Simulations

In this appendix, we use numerical simulations to highlight the tradeoffs of rerandomization.
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E.1 Well-behaved Treatment Effects

We first consider an environment where treatment effects depend smoothly on covariates.

We note that because treatment effects depend smoothly on covariates x, Assumption 1 does

not hold, and the losses from running a deterministic experiment maximizing balance vanish

as the sample size grows large.

Covariates x ∈ R5 are drawn i.i.d. according to
∏5

k=1 U [0, 1], a five-dimensional uniform

distribution. For each treatment status τ ∈ {0, 1}, these are mapped to outcomes according

to a five-dimensional unknown parameter µτ ∈ R5:

Prob(yi = 1|x) =
exp(µτ · x)

1 + exp(µτ · x)
.

Under correct belief h0, each parameter µτ is independently drawn according to a five-

dimensional truncated normal: µτ ∼
∏5

k=1N (0, 1)|[−2,2]. The set of adversarial priors H

consists of all doctrinaire priors corresponding to fixed values µτ ∈ [−2, 2]5. We denote by

e∗ and α the Bayes optimal experimental assignment and policy rule under this model.

We consider the rerandomized experiment EK , with K following the rule of thumb K =

min{N, 100}. We report balance—captured by the negative of the L2 norm between mean

characteristics across treatment and control—as well as losses compared to first-best under

various priors, and sample selection criteria.

• Bayes loss given Bayes optimal assignment

Eµ,x,τ∗
[

max
a∈{0,1}

u(p, a)− u(p, α)

]
; (E.1)

• Loss under worst prior given Bayes optimal assignment

max
µ0, µ1

Ex,τ∗
[

max
a∈{0,1}

u(p, a)− u(p, α)

]
; (E.2)
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Figure E.1: Rerandomization substantially increase balance with no cost to robustness.

0

2%

4%

6%

8%

10%

L
o

ss
 C

o
m

p
ar

ed
 t

o
 F

ir
st

−
b

es
t 

(E
rr

o
r 

R
at

e)

10 100 1,000
N (Log Scale)

0

−0.1

−0.2

−0.3

−0.4

−0.5

B
al

an
ce

10 100 1,000
N (Log Scale)

Randomization Rerandomization

Randomization (Worst Prior) Rerandomization (Worst Prior)

Rerandomization (Worst Prior, Evil RA)

• Loss under worst prior, and worst assignment τ

max
µ0, µ1

Ex max
τ

E
[

max
a∈{0,1}

u(p, a)− u(p, α)

]
. (E.3)

As Figure E.1 shows, the ex ante Bayes expected loss (E.1) is essentially identical under

randomization and rerandomization. Loss (E.2) chooses the prior that maximizes the error

rate given the experimental strategy E of the experimenter. While this is substantially higher

than the Bayes expected loss—as one might anticipate—it is not substantially different

between randomization and rerandomization. Finally, loss measure (E.3) stacks the deck

against the experimenter, and assumes that the experimenter has an “evil RA” who chooses

the experimental assignment τ from eK that maximizes the expected loss. This has no

application in the case of randomization, but in the case of rerandomization it substantially

increases error rates. However, it is important to note even under this highly unrealistic

scenario—the evil RA must know the data-generating process—the error rate is about one-

tenth of 1% for N ≥ 300.

Online Appendix–14



Figure E.2: Rerandomization increases balance with no robustness cost with fixed N .
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We also evaluate losses for N fixed at 100 while varying the number of rerandomizations

K. Figure E.2 shows that balance improves substantially with K, especially for the first 20

rerandomizations, while the error rate is essentially flat.

E.2 Poorly Behaved Treatment Effects

We now consider the impact of rerandomization in a specific state of the world p such that

a natural balance objective fails to improve the quality of decision-making.

Specifically, the environment is as follows. Covariates are on the real line x ∈ X ⊂ R

and the balance objective is to minimize the distance between the mean of each treatment

group: B(e) = −|x1 − x0|. The difficulty here is that treatment effects are very jagged as

a function of x, so that balance with respect to x1 and x0 does not help identify treatment

effects. Natural, deterministic assignments achieving a high balance objective will result in

non-vanishing efficiency losses.
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Figure E.3: Rerandomization substantially increase balance with no cost to robustness.

0

20%

40%

60%
E

rr
o
r 

R
at

e

10 100 1,000 10,000
N (Log Scale)

0

−500

−1,000

−1,500

B
al

an
ce

10 100 1,000 10,000
N (Log Scale)

Randomization Rerandomization

Specifically we set X = {1, 2, . . . , 10, 000} and

p0
x =


1
5

if x mod 6 ∈ {2, 4}
1
2

if x mod 6 /∈ {2, 4}
p1
x =


4
5

if x mod 6 ∈ {2, 4}
1
4

if x mod 6 /∈ {2, 4}
.

On aggregate, u(p, 1) ' 13
30
> 2

5
' u(p, 0), so that treatment (a = 1) is beneficial.

For this specific state, the aspect of covariates that balance seeks to improve is unre-

lated to treatment effects. In fact, a natural matching algorithm systematically assigning

consecutive xs to treatment and control (starting with treatment) results in an experimental

assignment that does not lead to the efficient decision. Figure E.3 examines the error rates

and balance of randomization and rerandomization. Both schemes yield the same error rate.

However, once again, rerandomization substantially improves the balance of the samples.

This is particularly true for small and moderate sample sizes. This is not useful for this par-

ticular state of the world, but may be valuable at states where treatment effects are better

behaved as a function of x.
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